从零开始学习VIO笔记 --- 第四讲:滑动窗口(基于滑动窗口算法的 VIO 系统:可观性和一致性)【作业】

本文深入探讨了基于滑动窗口算法的VIO(视觉惯性里程计)系统,重点讲解了可观性和一致性的概念,通过构建重投影误差函数,详细分析了误差项关于相机位姿和特征点的雅克比矩阵,并提供了单目BA优化的信息矩阵计算代码实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从零开始学习VIO笔记 --- 第四讲:滑动窗口(基于滑动窗口算法的 VIO 系统:可观性和一致性)【作业】

一. 题目

在这里插入图片描述

二. 解答

2.1 第一题

2.2 第二题

准备知识 单目BA优化,构建重投影误差函数, 误差项为 理论投影值减去实际测量值

  1. 误差关于相机位姿李代数的雅克比矩阵:

在这里插入图片描述

  • 误差是由观测值减预测值定义,所以前面带了负号;若是预测减观测值 那么去掉负号
  • se(3) 的定义方式是旋转在前,平移在后时,只要把这个矩阵的前三列与后三列对调即可
  • X ′ , Y ′ , Z ′ X^{'} ,Y^{'}, Z^{'} X,Y,Z是特征点在相机坐标系下的坐标值; P ′ = ( R c w ) − 1 ( P w − t c w ) \mathbf P^{'}=(R_{c}^{w})^{-1}(P^w - t_{c}^{w} ) P=(Rcw)1(Pwtcw) ,将特征点的坐标转换到相机坐标系下; 因为相机投影模型为: <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值