VINS ---视觉约束的雅克比推导
1 注
高博SLAM 十四讲 P186 中介绍了点的视觉重投影误差相对各个优化变量的雅克比
这儿做一个大概的公式介绍
1.1 投影误差公式
- 我们选择定义:(与高博书上相反,VINS确是这样定义的,为了与代码对应,我们也这样)
误差 = 理论预测值 - 观测值 - 十四讲 是使用像素平面下的像素坐标做差,我们也为了与VINS对应,使用归一化坐标系的点做差
我们记世界坐标系下一点 P w = [ X Y Z ] P_w=\begin{bmatrix}X\\Y\\Z\end{bmatrix} Pw=⎣⎡XYZ⎦⎤ 通过 T w c T_{wc} Twc转到相机坐标 P c = [ x y z ] P_c=\begin{bmatrix}x\\y\\z\end{bmatrix} Pc=⎣⎡xyz⎦⎤ ,再转到归一化坐标系 p p p, p p p为理论预测值:
P c = R c w ( P w + t c w ) = [ x y z ] P_c=R_{cw}(P_w+t_{cw})=\begin{bmatrix}x\\y\\z\end{bmatrix} Pc=Rcw(Pw+tcw)=⎣⎡xyz⎦⎤
p = [ x / z y / z 1 ] p\;=\;\begin{bmatrix}x/z\\y/z\\1\end{bmatrix} p=⎣⎡x/zy/z1⎦⎤
且在相机归一化坐标系下有 p p p 对应的观测值 p ′ = [ x ′ / z ′ y ′ / z ′ 1 ] p^{'} = \begin{bmatrix}x^{'}/z^{'}\\y^{'}/z^{'}\\1\end{bmatrix} p′=⎣⎡x′/z