知识点回顾:
- LDA线性判别
- PCA主成分分析
- t-sne降维
特征降维
通常情况下,我们提到特征降维,很多时候默认指的是无监督降维,这种方法只需要特征数据本身。但是实际上还包含一种有监督的方法
1. 无监督降维 (Unsupervised Dimensionality Reduction)
- 定义:这类算法在降维过程中不使用任何关于数据样本的标签信息(比如类别标签、目标值等)。它们仅仅根据数据点本身的分布、方差、相关性、局部结构等特性来寻找低维表示。
- 输入:只有特征矩阵 X。
- 目标:
- 保留数据中尽可能多的方差(如 PCA)。
- 保留数据的局部或全局流形结构(如 LLE, Isomap, t-SNE, UMAP)。
- 找到能够有效重构原始数据的紧凑表示(如 Autoencoder)。
- 找到统计上独立的成分(如 ICA)。
- 典型算法:
- PCA (Principal Component Analysis) / SVD (Singular Value Decomposition)
- t-SNE (t-distributed Stochastic Neighbor Embedding)
- UMAP (Uniform Manifold Approximation and Projection)
- LLE (Locally Linear Embedding)
- Isomap (Isometric Mapping)
- Autoencoders (基本形式)
- ICA (Independent Component Analysis)
“只需要特征就可以对特征降维了”:这句话描述的就是无监督降维。算法通过分析特征间的关系和分布来进行降维。
2. 有监督降维 (Supervised Dimensionality Reduction)
- 定义:这类算法在降维过程中会利用数据样本的标签信息(通常是类别标签 y)。它们的目标是找到一个低维子空间,在这个子空间中,不同类别的数据点能够被更好地分离开,或者说,这个低维表示更有利于后续的分类(或回归)任务。
- 输入:特征矩阵 X 和对应的标签向量 y。
- 目标:
- 最大化不同类别之间的可分性,同时最小化同一类别内部的离散度(如 LDA)。
- 找到对预测目标变量 `y` 最有信息量的特征组合。
- 典型算法:
- LDA (Linear Discriminant Analysis):这是最经典的监督降维算法。它寻找的投影方向能够最大化类间散度与类内散度之比。
- 还有一些其他的,比如 NCA (Neighbourhood Components Analysis),但 LDA 是最主要的代表。
“还需要有分类标签么”:对于有监督降维,分类标签(或其他形式的监督信号)是必需的。
PCA等无监督降维方法的目标是保留数据的最大方差,这些方差大的方向不一定是对分类最有用的方向。因此,在分类任务中,LDA通常比PCA更直接有效。
# # umap-learn 是一个用于降维和可视化的库,特别适合处理高维数据。它使用了一种基于流形学习的算法,可以有效地将高维数据嵌入到低维空间中,同时保持数据的局部结构。
# !pip install umap-learn -i https://pypi.tuna.tsinghua.edu.cn/simple
主要成分分析(PCA)
1. PCA 何时适用?数据是线性还是非线性?
- 线性性:
- PCA 是一种线性降维方法。它假设主成分是原始特征的线性组合。
- 它寻找的是一个能够最好地捕捉数据方差的线性子空间。
- 如果你的数据的潜在结构是高度非线性的(例如,“瑞士卷”形状、螺旋形),PCA可能无法有效地在低维空间中捕捉这种结构。它可能会将这类结构“压平”或扭曲。
- PCA 效果好的情况:
- 目标是最大化方差:当你认为数据中方差最大的方向包含了最重要的信息时。这在去噪或特征间存在相关性时通常是成立的。
- 数据分布大致呈椭球形或存在线性相关性:PCA 擅长找到这类分布的主轴。
- 作为其他线性模型的预处理步骤:不相关的主成分有时能让线性模型(如逻辑回归、线性SVM)表现更好。
- 探索性数据分析 (EDA):快速了解数据变异的主要模式。
- 降噪:假设噪声的方差低于信号的方差,PCA可以通过舍弃低方差的成分来帮助降噪。
- 当原始特征数量非常多,且存在多重共线性时:PCA可以通过生成少数几个不相关的主成分来解决多重共线性问题,并减少特征数量。
- PCA 可能不适用或需要谨慎使用的情况:
- 高度非线性数据:对于分布在复杂流形上的数据(例如“瑞士卷”、“S型曲线”),PCA会将其投影到一个线性子空间,这可能会丢失关键的非线性关系。在这种情况下,非线性降维技术(如 t-SNE, UMAP, LLE, Isomap, 核PCA, 自编码器)会是更好的选择。
- 方差并非衡量重要性的唯一标准:有时,方差较小的方向可能对特定任务至关重要(例如,在分类问题中,如果使用LDA,一个整体方差较小的方向可能对区分类别非常有效)。PCA是无监督的,它不考虑类别标签。
- 主成分的可解释性:虽然主成分是原始特征的线性组合,但与保留原始、可解释的特征相比,它们的直接物理解释有时可能更具挑战性。
- 数据特征尺度差异巨大:如果特征的尺度(单位或数值范围)相差悬殊(例如,一个特征以米为单位,另一个以毫米为单位),那么尺度较大的特征将在方差计算中占据主导地位,从而主导第一主成分。这就是为什么在应用PCA之前几乎总是推荐进行数据标准化(例如,将特征缩放到均值为0,方差为1)。
2. 总而言之,可以将PCA视为:
1. 对数据进行均值中心化。
2. 对中心化后的数据进行SVD。
3. 使用SVD得到的右奇异向量 V 作为主成分方向。
4. 使用奇异值 S 来评估每个主成分的重要性(解释的方差)。
5. 使用 U*S(或 X_centered * V)来获得降维后的数据表示。
t-分布随机邻域嵌入 (t-SNE)
t-SNE:保持高维数据的局部邻域结构,用于可视化
PCA 的目标是保留数据的全局方差,而 t-SNE 的核心目标是在高维空间中相似的数据点,在降维后的低维空间中也应该保持相似(即彼此靠近),而不相似的点则应该相距较远。
它特别擅长于将高维数据集投影到二维或三维空间进行可视化,从而揭示数据中的簇结构或流形结构。——深度学习可视化中很热门
1. 使用 t-SNE 时需要注意的事项:
- 计算成本高:对于非常大的数据集(例如几十万甚至上百万样本),t-SNE 的计算会非常慢。通常建议在应用 t-SNE 之前,先用 PCA 将数据降到一个适中的维度(例如50维),这样可以显著加速 t-SNE 的计算并可能改善结果。
- 超参数敏感:
- Perplexity (困惑度):这个参数对结果影响较大。常见的取值范围是 5 到 50。较小的困惑度关注非常局部的结构,较大的困惑度则考虑更广泛的邻域。通常需要尝试不同的值。
- n_iter (迭代次数):需要足够的迭代次数让算法收敛。默认值通常是1000。如果可视化结果看起来还不稳定,可以尝试增加迭代次数。
- learning_rate (学习率):也可能影响收敛。
- 结果的解释:
- 簇的大小和密度在 t-SNE 图中没有直接意义。t-SNE 会尝试将所有簇展开到相似的密度。不要根据簇在图上的大小来判断原始数据中簇的实际大小或密度。
- 点之间的距离在全局上没有意义。两个相距较远的簇,它们之间的距离并不代表它们在原始高维空间中的实际距离。t-SNE 主要保留的是局部邻域关系。
- 多次运行结果可能不同:由于优化过程的随机初始化和梯度下降的性质,多次运行 t-SNE 可能会得到略微不同的可视化结果。但好的簇结构通常是稳定的。
- 不适合作为通用的有监督学习预处理步骤:因为它的目标是可视化和保持局部结构,而不是最大化类别可分性或保留全局方差,所以它通常不直接用于提高分类器性能的降维。LDA 或 PCA (在某些情况下) 更适合这个目的。
2. 总结:
t-SNE 是一种强大的非线性降维技术,主要用于高维数据的可视化。它通过在低维空间中保持高维空间中数据点之间的局部相似性(邻域关系)来工作。与PCA关注全局方差不同,t-SNE 更关注局部细节。理解它的超参数(尤其是困惑度)和结果的正确解读方式非常重要。
线性判别分析 (Linear Discriminant Analysis, LDA)
核心定义与目标:
线性判别分析 (LDA) 是一种经典的有监督降维算法,也常直接用作分类器。作为降维技术时,其核心目标是找到一个低维特征子空间(即原始特征的线性组合),使得在该子空间中,不同类别的数据点尽可能地分开(类间距离最大化),而同一类别的数据点尽可能地聚集(类内方差最小化)。
工作原理简述:
LDA 通过最大化 “类间散布矩阵” 与 “类内散布矩阵” 之比的某种度量(例如它们的行列式之比)来实现其降维目标。它寻找能够最好地区分已定义类别的投影方向。
关键特性:
- 有监督性 (Supervised):这是 LDA 与 PCA 最根本的区别。LDA 在降维过程中必须使用数据的类别标签 (y) 来指导投影方向的选择,目的是优化类别的可分离性。
- 降维目标维度 (Number of Components):LDA 降维后的维度(即生成的判别特征的数量)有一个严格的上限:min (n_features, n_classes - 1)。
- n_features:原始特征的数量。
- n_classes:类别标签 (y) 中不同类别的数量。
- 这意味着,例如,对于一个二分类问题 (n_classes = 2),LDA 最多能将数据降至 1 维。如果有 5 个类别,最多能降至 4 维(前提是原始特征数不少于 4)。这个特性直接源于其优化目标。
- 线性变换 (Linear Transformation):与 PCA 类似,LDA 也是一种线性方法。它找到的是原始特征的线性组合来形成新的、具有判别能力的低维特征(称为判别向量或判别成分)。
- 数据假设 (Assumptions):
- 理论上,LDA 假设每个类别的数据服从多元高斯分布。
- 理论上,LDA 假设所有类别具有相同的协方差矩阵。
- 在实践中,即使这些假设不完全满足,LDA 通常也能表现良好,尤其是在类别大致呈椭球状分布且大小相似时。
输入要求:
- 特征 (X):数值型特征。如果存在类别型特征,通常需要先进行预处理(如独热编码)。
- 标签 (y):一维的、代表类别身份的数组或 Series (例如 [0, 1, 0, 2, 1])。LDA 不需要标签进行独热编码。标签的类别数量直接决定了降维的上限。
与特征 (X) 和标签 (y) 的关系:
- LDA 的降维过程和结果直接由标签 y 中的类别结构驱动。它试图找到最能区分这些由 y 定义的类别的特征组合。
- 原始特征 X 提供了构建这些判别特征的原材料。特征 X 的质量和相关性会影响 LDA 的效果,但降维的 “方向盘” 是由 y 控制的。
优点:
- 直接优化类别可分性,非常适合作为分类任务的预处理步骤,往往能提升后续分类器的性能。
- 计算相对高效。
- 生成的低维特征具有明确的判别意义。
局限性与注意事项:
- 降维的维度受限于 n_classes - 1,这可能比 PCA 能达到的降维程度低很多,尤其是在类别数较少时。
- 作为线性方法,可能无法捕捉数据中非线性的类别结构。如果类别边界是非线性的,LDA 效果可能不佳。
- 对数据的高斯分布和等协方差假设在理论上是存在的,极端偏离这些假设可能影响性能。
- 如果类别在原始特征空间中本身就高度重叠,LDA 的区分能力也会受限。
适用场景:
- 当目标是提高后续分类模型的性能时,LDA 是一个强有力的降维工具。
- 当类别信息已知且被认为是区分数据的主要因素时。
- 当希望获得具有良好类别区分性的低维表示时,尤其可用于数据可视化(如果能降到 2D 或 3D)。
简而言之,LDA 是一种利用类别标签信息来寻找最佳类别分离投影的降维方法,其降维的潜力直接与类别数量挂钩。