DAY 23 Pipeline 管道

知识回顾:

  1. 转化器和估计器的概念
  2. 管道工程
  3. ColumnTransformer和Pipeline类

相关概念

Pipeline在机器学习领域可以翻译为“管道”,也可以翻译为“流水线”,是机器学习中一个重要的概念。

在机器学习中,通常会按照一定的顺序对数据进行预处理、特征提取、模型训练和模型评估等步骤,以实现机器学习模型的训练和评估。为了方便管理这些步骤,我们可以使用pipeline来构建一个完整的机器学习流水线。

Pipeline是一个用于组合多个估计器(estimator)的 estimator,它实现了一个流水线,其中每个估计器都按照一定的顺序执行。

转换器(Transformer)

核心功能数据转换(如标准化、编码、降维等),通过 fit() 学习转换参数transform() 执行转换,不涉及 “预测” 或 “建模” 的核心目标。

转换器通常用于对数据进行预处理,例如对数据进行归一化、标准化、缺失值填充等。转换器也可以用于对数据进行特征提取,例如对数据进行特征选择、特征组合等。转换器的特点是无状态的,即它们不会存储任何关于数据的状态信息(指的是不存储内参)。

转换器仅根据输入数据学习转换规则(比如函数规律、外参),并将其应用于新的数据。因此,转换器可以在训练集上学习转换规则,并在训练集之外的新数据上应用这些规则。

常见的转换器数据缩放器(如StandardScaler、MinMaxScaler)特征选择器(如SelectKBest、PCA)特征提取器(如CountVectorizer、TF-IDFVectorizer)等。

估计器(Estimator)

核心功能:从数据中学习模型并进行预测,通过 fit() 学习模型参数predict() 输出预测结果,其目标是建模而非单纯的数据转换。

估计器(Estimator)是实现机器学习算法的对象或类。它用于拟合 fit 数据并进行预测 predict。估计器是机器学习模型的基本组成部分,用于从数据中学习模式、进行预测和进行模型评估。

估计器的主要方法是fit和predict。fit方法用于根据输入数据学习模型的参数和规律,而predict方法用于对新的未标记样本进行预测。估计器的特点是有状态的,即它们在训练过程中存储了关于数据的状态信息,以便在预测阶段使用。

估计器通过学习训练数据中的模式和规律来进行预测。因此,估计器需要在训练集上进行训练,并使用训练得到的模型参数对新数据进行预测。

常见的估计器:分类器(classifier)、回归器(regresser)、聚类器(clusterer)。

总结:在实际工作流(如 Pipeline)中,二者是顺序协作关系:

  • 转换器先对原始数据进行预处理(如标准化、特征提取),输出适合建模的数据;
  • 估计器再基于转换后的数据进行训练和预测。

管道(pipeline)

机器学习是由转换器(Transformer)和估计器(Estimator)按照一定顺序组合在一起的来完成了整个流程。

机器学习的管道(Pipeline)机制通过将多个转换器和估计器按顺序连接在一起,可以构建一个完整的数据处理和模型训练流程。在管道机制中,可以使用Pipeline类来组织和连接不同的转换器和估计器。Pipeline类提供了一种简单的方式来定义和管理机器学习任务的流程。

管道机制是按照封装顺序依次执行的一种机制,在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。且代码看上去更加简洁明确。这也意味着,很多个不同的数据集,只要处理成管道的输入形式,后续的代码就可以复用。(这里为我们未来的python文件拆分做铺垫),也就是把很多个类和函数操作写进一个新的pipeline中。

这符合编程中的一个非常经典的思想:don't repeat yourself。(dry原则),也叫做封装思想,我们之前提到过类似的思想的应用: 函数、类,现在我们来说管道。

Pipeline最大的价值和核心应用场景之一,就是与交叉验证网格搜索等结合使用,来:

1. 防止数据泄露: 这是在使用交叉验证时,Pipeline自动完成预处理并在每个折叠内独立fit/transform的关键优势。

2. 简化超参数调优: 可以方便地同时调优预处理步骤和模型的参数。

代码教学

导入库和数据加载

# 导入基础库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import time # 导入 time 库
import warnings

# 忽略警告
warnings.filterwarnings("ignore")

# 设置中文字体和负号正常显示
plt.rcParams['font.sans-serif'] = ['Heiti TC'] 
plt.rcParams['axes.unicode_minus'] = False

# 导入 Pipeline 和相关预处理工具
from sklearn.pipeline import Pipeline # 用于创建机器学习工作流
from sklearn.compose import ColumnTransformer # 用于将不同的预处理应用于不同的列
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, StandardScaler # 用于数据预处理(有序编码、独热编码、标准化)
from sklearn.impute import SimpleImputer # 用于处理缺失值

# 导入机器学习模型和评估工具
from sklearn.ensemble import RandomForestClassifier # 随机森林分类器
from sklearn.metrics import classification_report, confusion_matrix # 用于评估分类器性能
from sklearn.model_selection import train_test_split # 用于划分训练集和测试集


# --- 加载原始数据 ---
# 我们加载原始数据,不对其进行任何手动预处理
data = pd.read_csv('data.csv')

print("原始数据加载完成,形状为:", data.shape) # (7500,18)
# print(data.head()) # 可以打印前几行看看原始数据

分离特征和标签,划分数据集

# --- 分离特征和标签 (使用原始数据) ---
y = data['Credit Default'] # 标签
X = data.drop(['Credit Default'], axis=1) # 特征 (axis=1 表示按列删除)

print("\n特征和标签分离完成。")
print("特征 X 的形状:", X.shape)
print("标签 y 的形状:", y.shape)

# --- 划分训练集和测试集 (在任何预处理之前划分) ---
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集

print("\n数据集划分完成 (预处理之前)。")
print("X_train 形状:", X_train.shape)
print("X_test 形状:", X_test.shape)
print("y_train 形状:", y_train.shape)
print("y_test 形状:", y_test.shape)

定义预处理步骤

# --- 定义不同列的类型和它们对应的预处理步骤 ---
# 这些定义是基于原始数据 X 的列类型来确定的

# 识别原始的 object 列 (对应你原代码中的 discrete_features 在预处理前)
object_cols = X.select_dtypes(include=['object']).columns.tolist()
# 识别原始的非 object 列 (通常是数值列)
numeric_cols = X.select_dtypes(exclude=['object']).columns.tolist()


# 有序分类特征 (对应你之前的标签编码)
# 注意:OrdinalEncoder默认编码为0, 1, 2... 对应你之前的1, 2, 3...需要在模型解释时注意
# 这里的类别顺序需要和你之前映射的顺序一致
ordinal_features = ['Home Ownership', 'Years in current job', 'Term']
# 定义每个有序特征的类别顺序,这个顺序决定了编码后的数值大小
ordinal_categories = [
    ['Own Home', 'Rent', 'Have Mortgage', 'Home Mortgage'], # Home Ownership 的顺序 (对应1, 2, 3, 4)
    ['< 1 year', '1 year', '2 years', '3 years', '4 years', '5 years', '6 years', '7 years', '8 years', '9 years', '10+ years'], # Years in current job 的顺序 (对应1-11)
    ['Short Term', 'Long Term'] # Term 的顺序 (对应0, 1)
]
# 构建处理有序特征的 Pipeline: 先填充缺失值,再进行有序编码
ordinal_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充分类特征的缺失值
    ('encoder', OrdinalEncoder(categories=ordinal_categories, handle_unknown='use_encoded_value', unknown_value=-1)) # 进行有序编码
])
print("有序特征处理 Pipeline 定义完成。")


# 标称分类特征 (对应你之前的独热编码)
nominal_features = ['Purpose'] # 使用原始列名
# 构建处理标称特征的 Pipeline: 先填充缺失值,再进行独热编码
nominal_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充分类特征的缺失值
    ('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False)) # 进行独热编码, sparse_output=False 使输出为密集数组
])
print("标称特征处理 Pipeline 定义完成。")


# 连续特征 (对应你之前的众数填充 + 添加标准化)
# 从所有列中排除掉分类特征,得到连续特征列表
# continuous_features = X.columns.difference(object_cols).tolist() # 原始X中非object类型的列
# 也可以直接从所有列中排除已知的有序和标称特征
continuous_features = [f for f in X.columns if f not in ordinal_features + nominal_features]

# 构建处理连续特征的 Pipeline: 先填充缺失值,再进行标准化
continuous_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充缺失值 (复现你的原始逻辑)
    ('scaler', StandardScaler()) # 标准化,一个好的实践 (如果你严格复刻原代码,可以移除这步)
])
print("连续特征处理 Pipeline 定义完成。")
# --- 构建 ColumnTransformer ---
# 将不同的预处理应用于不同的列子集,构造一个完备的转化器
# ColumnTransformer 接收一个 transformers 列表,每个元素是 (名称, 转换器对象, 列名列表)
preprocessor = ColumnTransformer(
    transformers=[
        ('ordinal', ordinal_transformer, ordinal_features), # 对 ordinal_features 列应用 ordinal_transformer
        ('nominal', nominal_transformer, nominal_features), # 对 nominal_features 列应用 nominal_transformer
        ('continuous', continuous_transformer, continuous_features) # 对 continuous_features 列应用 continuous_transformer
    ],
    remainder='passthrough' # 如何处理没有在上面列表中指定的列。
                           # 'passthrough' 表示保留这些列,不做任何处理。
                           # 'drop' 表示丢弃这些列。
)

print("\nColumnTransformer (预处理器) 定义完成。")
# print(preprocessor) # 可以打印 preprocessor 对象看看它的结构

构建完整Pipeline

# --- 构建完整的 Pipeline ---
# 将预处理器和模型串联起来
# 使用你原代码中 RandomForestClassifier 的默认参数和 random_state
pipeline = Pipeline(steps=[
    ('preprocessor', preprocessor), # 第一步:应用所有的预处理 (我们刚刚定义的 ColumnTransformer 对象)
    ('classifier', RandomForestClassifier(random_state=42)) # 第二步:随机森林分类器 (使用默认参数和指定的 random_state)
])

print("\n完整的 Pipeline 定义完成。")
# print(pipeline) # 可以打印 pipeline 对象看看它的结构

使用Pipline进行训练和评估

# --- 1. 使用 Pipeline 在划分好的训练集和测试集上评估 ---
# 完全模仿你原代码的第一个评估步骤

print("\n--- 1. 默认参数随机森林 (训练集 -> 测试集) ---") # 使用你原代码的输出文本
# import time # 引入 time 库 (已在文件顶部引入)

start_time = time.time() # 记录开始时间

# 在原始的 X_train, y_train 上拟合整个Pipeline
# Pipeline会自动按顺序执行 preprocessor 的 fit_transform(X_train),
# 然后用处理后的数据和 y_train 拟合 classifier
pipeline.fit(X_train, y_train)

# 在原始的 X_test 上进行预测
# Pipeline会自动按顺序执行 preprocessor 的 transform(X_test),
# 然后用处理后的数据进行 classifier 的 predict
pipeline_pred = pipeline.predict(X_test)

end_time = time.time() # 记录结束时间

print(f"训练与预测耗时: {end_time - start_time:.4f} 秒") # 使用你原代码的输出格式

print("\n默认随机森林 在测试集上的分类报告:") # 使用你原代码的输出文本
print(classification_report(y_test, pipeline_pred))
print("默认随机森林 在测试集上的混淆矩阵:") # 使用你原代码的输出文本
print(confusion_matrix(y_test, pipeline_pred))

@浙大疏锦行

### DuckDB Pipeline 实现与使用 DuckDB 是一种嵌入式的SQL数据库管理系统,专为分析查询进行了优化。为了高效处理大规模数据集,DuckDB采用了先进的执行计划生成技术和并行计算框架。 #### 执行管道机制 在DuckDB中,查询执行被设计成一系列的操作符组成的流水线结构。每个操作符负责特定的任务,比如扫描表、过滤记录或者聚合数值等。这些操作符通过管道连接起来形成完整的查询执行路径[^2]。 当涉及到复杂的数据流转换时,这种基于管道的设计允许更灵活高效的内存管理和并发控制。具体来说: - **Pipeline Construction**: 查询编译阶段会构建一个由多个物理算子构成的有向无环图(DAG),其中节点代表不同的运算单元而边则表示数据流动方向。 - **Parallel Execution**: 如果存在足够的资源,则可以将独立部分分配给不同线程甚至跨多台机器来加速整个过程。 对于实际应用中的pipeline相关功能,可以通过如下Python代码片段展示如何创建和运行简单的ETL(Extract, Transform, Load)流程: ```python import duckdb con = duckdb.connect() # 创建临时表格用于存储中间结果 con.execute(""" CREATE TABLE temp_sales AS SELECT * FROM read_csv_auto('sales_data.csv'); """) # 数据清洗与预处理 con.execute(""" INSERT INTO cleaned_sales SELECT date_trunc('day', order_date), product_id, SUM(quantity_sold) as total_quantity, AVG(sale_price) as avg_sale_price FROM temp_sales GROUP BY 1,2; """) # 将最终结果导出到新文件 con.execute("COPY (SELECT * FROM cleaned_sales ORDER BY day DESC LIMIT 1000) TO 'top_1000_sales_records.csv' WITH (HEADER 1);") ``` 上述例子展示了从读取原始CSV文件开始直到最后写出经过加工后的前一千条销售记录的过程。这里的关键在于利用了`read_csv_auto()`函数自动推断输入格式以及内置的时间序列函数如`date_trunc()`来进行日期截断操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值