工作中常用的Stream集合处理

文章介绍了Java8引入的Lambda表达式和StreamAPI如何极大地简化了代码,通过实例展示了如何使用Stream进行过滤、排序、映射、分组等操作,以及如何结合Lambda表达式使代码更加简洁高效。此外,还提到了常用函数式接口如Function、Consumer、Predicate和Supplier的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:Java8的新特性主要是Lambda表达式和流,当流和Lambda表达式结合起来一起使用时,因为流申明式处理数据集合的特点,它允许把函数作为一个方法的参数,让我们的代码更优雅简洁。

Java8最大的特性就是引入Lambda表达式,即函数式编程,可以将行为进行传递。总结就是:使用不可变值与函数,函数对不可变值进行处理,映射成另一个值。


一、巧用Stream优化老代码

如果有一个需求,需要对数据库查询到的菜肴进行一个处理:

  • 筛选出卡路里小于400的菜肴

  • 对筛选出的菜肴进行一个排序

  • 获取排序后菜肴的名字

菜肴:Dish.java

public class Dish {
    private String name;
    private boolean vegetarian;
    private int calories;
    private Type type;

    // getter and setter
}

Java8以前的实现方式

private List<String> beforeJava7(List<Dish> dishList) {
        List<Dish> lowCaloricDishes = new ArrayList<>();

        //1.筛选出卡路里小于400的菜肴
        for (Dish dish : dishList) {
            if (dish.getCalories() < 400) {
                lowCaloricDishes.add(dish);
            }
        }

        //2.对筛选出的菜肴进行排序
        Collections.sort(lowCaloricDishes, new Comparator<Dish>() {
            @Override
            public int compare(Dish o1, Dish o2) {
                return Integer.compare(o1.getCalories(), o2.getCalories());
            }
        });

        //3.获取排序后菜肴的名字
        List<String> lowCaloricDishesName = new ArrayList<>();
        for (Dish d : lowCaloricDishes) {
            lowCaloricDishesName.add(d.getName());
        }

        return lowCaloricDishesName;
    }

Java8之后的实现方式

private List<String> afterJava8(List<Dish> dishList) {
        return dishList.stream()
                .filter(d -> d.getCalories() < 400)  //筛选出卡路里小于400的菜肴
                .sorted(comparing(Dish::getCalories))  //根据卡路里进行排序
                .map(Dish::getName)  //提取菜肴名称
                .collect(Collectors.toList()); //转换为List
}

不拖泥带水,一气呵成,原来需要写24代码实现的功能现在只需5行就可以完成了,这就是Stream+Lambda表达式之美!


二、工作中常用的Stream+Lambda表达式

1、提取 List 中元素的某一字段生成新的 List

需求:想要将List中实体的某个字段的值提取出来

List<Object> newList = objectList.stream().map(Object::getVar).collect(Collectors.toList());
将object换成你的实体类即可。

//例如:想要将List中Person对象的name提取出来
List<Person> personList = new ArrayList<>();
List<String> nameList = personList.stream().map(Person::getName).collect(Collectors.toList());

2、stream将list转化为map

工作中,我们经常遇到listmap的案例,Collectors.toMap就可以把一个List数组转成一个Map

//1.key和value都是对象中的某个属性值
Map<String, String> userMap1 = userList.stream().collect(Collectors.toMap(User::getId, User::getName));

//2.key是对象中的某个属性值,value是对象本身(使用返回本身的lambda表达式)
Map<String, User> userMap2 = userList.stream().collect(Collectors.toMap(User::getId, User -> User));

//3.key是对象中的某个属性值,value是对象本身(使用Function.identity()的简洁写法)
Map<String, User> userMap3 = userList.stream().collect(Collectors.toMap(User::getId, Function.identity()));

//4.key是对象中的某个属性值,value是对象本身,当key冲突时选择第二个key值覆盖第一个key值
Map<String, User> userMap4 = userList.stream().collect(Collectors.toMap(User::getId, Function.identity(), (oldValue, newValue) -> newValue));

如果不正确指定Collectors.toMap方法的第三个参数(key冲突处理函数),那么在key重复的情况下该方法会报出【Duplicate Key】的错误导致Stream流异常终止,使用时要格外注意这一点。

举例:

public class TestLambda {

    public static void main(String[] args) {

        List<UserInfo> userInfoList = new ArrayList<>();
        userInfoList.add(new UserInfo(1L, "伟大的何哥", 18));
        userInfoList.add(new UserInfo(2L, "何哥", 27));
        userInfoList.add(new UserInfo(2L, "何弟", 26));

        /**
         *  list 转 map
         *  使用Collectors.toMap的时候,如果有可以重复会报错,所以需要加(k1, k2) -> k1
         *  (k1, k2) -> k1 表示,如果有重复的key,则保留第一个,舍弃第二个
         */
        Map<Long, UserInfo> userInfoMap = userInfoList.stream().collect(Collectors.toMap(UserInfo::getUserId, userInfo -> userInfo, (k1, k2) -> k1));
        userInfoMap.values().forEach(a->System.out.println(a.getUserName()));
    }
}

//运行结果
伟大的何哥
何哥

类似的,还有Collectors.toList()Collectors.toSet(),表示把对应的流转化为list或者Set

3、filter()过滤

从数组集合中,过滤掉不符合条件的元素,留下符合条件的元素。

List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "何哥", 18));
userInfoList.add(new UserInfo(2L, "何弟", 27));
userInfoList.add(new UserInfo(3L, "何妹", 26));
        
/**
 * filter 过滤,留下超过18岁的用户
 */
List<UserInfo> userInfoResultList = userInfoList.stream().filter(user -> user.getAge() > 18).collect(Collectors.toList());
userInfoResultList.forEach(a -> System.out.println(a.getUserName()));
        
//运行结果
何弟
何妹

4、foreach遍历

foreach 遍历list,遍历map,真的很丝滑。

/**
 * forEach 遍历集合List列表
 */
List<String> userNameList = Arrays.asList("李白", "阿珂", "娜可露露");
userNameList.forEach(System.out::println);
 
HashMap<String, String> hashMap = new HashMap<>();
hashMap.put("中路", "安琪拉");
hashMap.put("上路", "孙策");
hashMap.put("打野", "澜");
/**
 *  forEach 遍历集合Map
 */
hashMap.forEach((k, v) -> System.out.println(k + ":\t" + v));

//运行结果
李白
阿珂
娜可露露
中路: 安琪拉
上路:孙策
打野:澜

5、groupingBy分组

提到分组,相信大家都会想起SQLgroup by。我们经常需要一个List做分组操作。比如,按城市分组用户。在Java8之前,是这么实现的:

List<UserInfo> originUserInfoList = new ArrayList<>();
originUserInfoList.add(new UserInfo(1L, "刘备", 18,"北京"));
originUserInfoList.add(new UserInfo(3L, "关羽", 26,"上海"));
originUserInfoList.add(new UserInfo(2L, "张飞", 27,"深圳"));

Map<String, List<UserInfo>> result = new HashMap<>();
for (UserInfo userInfo : originUserInfoList) {
  String city = userInfo.getCity();
  List<UserInfo> userInfos = result.get(city);
  if (userInfos == null) {
      userInfos = new ArrayList<>();
      result.put(city, userInfos);
    }
  userInfos.add(userInfo);
}

而使用Java8的groupingBy分组器,清爽无比:

Map<String, List<UserInfo>> result = originUserInfoList.stream()
.collect(Collectors.groupingBy(UserInfo::getCity));

6、sorted+Comparator 排序

默认升序排序

List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "张三", 18));
userInfoList.add(new UserInfo(3L, "李四", 26));
userInfoList.add(new UserInfo(2L, "王麻子", 27));

/**
 *  sorted + Comparator.comparing 排序列表,
 */
userInfoList = userInfoList.stream().sorted(Comparator.comparing(UserInfo::getAge)).collect(Collectors.toList());
userInfoList.forEach(a -> System.out.println(a.toString()));

System.out.println("开始降序排序");

/**
 * 如果想降序排序,则可以使用加reversed()
 */
userInfoList = userInfoList.stream().sorted(Comparator.comparing(UserInfo::getAge).reversed()).collect(Collectors.toList());
userInfoList.forEach(a -> System.out.println(a.toString()));

//运行结果
UserInfo{userId=1, userName='张三', age=18}
UserInfo{userId=3, userName='李四', age=26}
UserInfo{userId=2, userName='王麻子', age=27}
开始降序排序
UserInfo{userId=2, userName='王麻子', age=27}
UserInfo{userId=3, userName='李四', age=26}
UserInfo{userId=1, userName='张三', age=18}

7、distinct去重

distinct可以去除重复的元素:

List<String> list = Arrays.asList("A", "B", "F", "A", "C");
List<String> temp = list.stream().distinct().collect(Collectors.toList());
temp.forEach(System.out::println);

8、findFirst 返回第一个

findFirst 很多业务场景,我们只需要返回集合的第一个元素即可:

List<String> list = Arrays.asList("A", "B", "F", "A", "C");
list.stream().findFirst().ifPresent(System.out::println);

9、anyMatch是否至少匹配一个元素

anyMatch 检查流是否包含至少一个满足给定谓词的元素。

Stream<String> stream = Stream.of("A", "B", "C", "D");
boolean match = stream.anyMatch(s -> s.contains("C"));
System.out.println(match);
//输出
true

10、allMatch 匹配所有元素

allMatch 检查流是否所有都满足给定谓词的元素。

Stream<String> stream = Stream.of("A", "B", "C", "D");
boolean match = stream.allMatch(s -> s.contains("C"));
System.out.println(match);
//输出
false

11、map转换

map方法可以帮我们做元素转换,比如一个元素所有字母转化为大写,又或者把获取一个元素对象的某个属性,demo如下:

List<String> list = Arrays.asList("jay", "tianluo");
//转化为大写
List<String> upperCaselist = list.stream().map(String::toUpperCase).collect(Collectors.toList());
upperCaselist.forEach(System.out::println);

12、Reduce

Reduce可以合并流的元素,并生成一个值

int sum = Stream.of(1, 2, 3, 4).reduce(0, (a, b) -> a + b);
System.out.println(sum);

13、peek 打印个日志

peek()方法是一个中间Stream操作,有时候我们可以使用peek来打印日志。

List<String> result = Stream.of("何哥", "伟大的何哥", "何弟")
            .filter(a -> a.contains("何哥"))
            .peek(a -> System.out.println("测试:" + a)).collect(Collectors.toList());
System.out.println(result);
//运行结果
测试:何哥
测试:伟大的何哥
[何哥,伟大的何哥]

14、Max,Min最大最小

使用lambda流求最大,最小值,非常方便。

List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "后羿", 18));
userInfoList.add(new UserInfo(3L, "鲁班", 26));
userInfoList.add(new UserInfo(2L, "虞姬", 27));

Optional<UserInfo> maxAgeUserInfoOpt = userInfoList.stream().max(Comparator.comparing(UserInfo::getAge));
maxAgeUserInfoOpt.ifPresent(userInfo -> System.out.println("max age user:" + userInfo));

Optional<UserInfo> minAgeUserInfoOpt = userInfoList.stream().min(Comparator.comparing(UserInfo::getAge));
minAgeUserInfoOpt.ifPresent(userInfo -> System.out.println("min age user:" + userInfo));

//运行结果
max age user:UserInfo{userId=2, userName='虞姬', age=27}
min age user:UserInfo{userId=1, userName='后羿', age=18}

15、count统计

一般count()表示获取流数据元素总数。

List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "吕布", 18));
userInfoList.add(new UserInfo(3L, "貂蝉", 26));
userInfoList.add(new UserInfo(2L, "董卓", 27));

long count = userInfoList.stream().filter(user -> user.getAge() > 18).count();
System.out.println("大于18岁的用户:" + count);
//输出
大于18岁的用户:2

16、字符串拼接

如果将所有学生的名字拼接起来,怎么做呢?通常只能创建一个StringBuilder,循环拼接。使用Stream,使用Collectors.joining()简单容易。

public class JoiningTest {
    public static void main(String[] args) {
        List<Student> students = new ArrayList<>(3);
        students.add(new Student("路飞", 22, 175));
        students.add(new Student("红发", 40, 180));
        students.add(new Student("白胡子", 50, 185));

         String names = students.stream()
             .map(Student::getName).collect(Collectors.joining(",","[","]"));
        System.out.println(names);
    }
}
//输出结果
//[路飞,红发,白胡子]

joining接收三个参数,第一个是分界符,第二个是前缀符,第三个是结束符。也可以不传入参数Collectors.joining(),这样就是直接拼接。

17、Stream流,修改List<String> 和 List<对象>

a、修改List<String>

 /**
  * List<String> 无法for循环修改  用jdk8新特性  stream流
  */

 List<String> list = Arrays.asList("1" , "1" ,"1" ,"1" ,"1" ,"1");
 
 // 给 list 元素都添加 2 标识
 System.out.println(list.stream().map(x -> x+2).collect(Collectors.toList()));

输出:[12, 12, 12, 12, 12, 12]

b、修改List<对象>

List<DataX> dataXES = JSON.parseArray(payload, DataX.class);
            dataXES = dataXES.stream().peek(x -> x.setTss("11111"))).collect(Collectors.toList());

三、流的操作类型和常用函数式接口

流的操作类型主要分为两种:

1、中间操作

一个流可以后面跟随零个或多个中间操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的,仅仅调用到这类方法,并没有真正开始流的遍历,真正的遍历需等到终端操作时,常见的中间操作有filter、map等。

2、终端操作

一个流有且只能有一个终端操作,当这个操作执行后,流就被关闭了,无法再被操作,因此一个流只能被遍历一次,若想在遍历需要通过源数据在生成流。终端操作的执行,才会真正开始流的遍历。如下面即将介绍的count、collect等。

3、常用函数式接口

其实lambda离不开函数式接口,我们来看下JDK8常用的几个函数式接口:

  • Function<T, R>(转换型): 接受一个输入参数,返回一个结果

  • Consumer<T> (消费型): 接收一个输入参数,并且无返回操作

  • Predicate<T> (判断型): 接收一个输入参数,并且返回布尔值结果

  • Supplier<T> (供给型): 无参数,返回结果

Function<T, R> 是一个功能转换型的接口,可以把将一种类型的数据转化为另外一种类型的数据

    private void testFunction() {
        //获取每个字符串的长度,并且返回
        Function<String, Integer> function = String::length;
        Stream<String> stream = Stream.of("何哥", "伟大的何哥", "程序员何哥");
        Stream<Integer> resultStream = stream.map(function);
        resultStream.forEach(System.out::println);
    }

Consumer<T>是一个消费性接口,通过传入参数,并且无返回的操作

   private void testComsumer() {
        //获取每个字符串的长度,并且返回
        Consumer<String> comsumer = System.out::println;
        Stream<String> stream = Stream.of("何哥", "伟大的何哥", "程序员何哥");
        stream.forEach(comsumer);
    }

Predicate<T>是一个判断型接口,并且返回布尔值结果.

    private void testPredicate() {
        //获取每个字符串的长度,并且返回
        Predicate<Integer> predicate = a -> a > 18;
        UserInfo userInfo = new UserInfo(2L, "Java后端何哥", 27);
        System.out.println(predicate.test(userInfo.getAge()));
    }

Supplier<T>是一个供给型接口,无参数,有返回结果。

    private void testSupplier() {
        Supplier<Integer> supplier = () -> Integer.valueOf("666666");
        System.out.println(supplier.get());
    }

这几个函数在日常开发中,也是可以灵活应用的,比如我们DAO操作完数据库,是会有个result的整型结果返回。我们就可以用Supplier<T>来统一判断是否操作成功。如下:

    private void saveDb(Supplier<Integer> supplier) {
        if (supplier.get() > 0) {
            System.out.println("插入数据库成功");
        }else{
            System.out.println("插入数据库失败");
        }
    }
    
    @Test
    public void add() throws Exception {
        Course course=new Course();
        course.setCname("java");
        course.setUserId(100L);
        course.setCstatus("Normal");
        saveDb(() -> courseMapper.insert(course));
    }

参考链接:

巧用Stream优化老代码,太清爽了!

### Java Stream 处理中的映射操作 Java 的 Stream API 提供了一种高效且简洁的方来进行集合的映射操作。通过 `map` 和 `flatMap` 方法可以轻松实现元素级别的换。 #### 使用 `map` 进行单个元素到另一个对象的映射 当需要将中的每一个元素都按照某种规则化为另一种形的对象时,可以使用 `map` 函数。该函数接收一个参数——即当正在被迭代的元素,并返回一个新的值作为化后的结果。 ```java import java.util.Arrays; import java.util.List; import java.util.stream.Collectors; public class MapExample { public static void main(String[] args) { List<String> strings = Arrays.asList("apple", "banana", "orange"); // 将字符串列表中的每个单词首字母大写化 List<String> capitalizedStrings = strings.stream() .map(str -> str.substring(0, 1).toUpperCase() + str.substring(1)) .collect(Collectors.toList()); System.out.println(capitalizedStrings); // 输出: [Apple, Banana, Orange] } } ``` 这种方法适用于一对一的关系,在这种情况下,输入中的每一项都会对应输出里的唯一一项[^2]。 #### 利用 `flatMap` 处理一对多的情况 对于某些场景下可能需要把一个元素展开成多个新元素加入到最终的结果集中,这时就可以采用 `flatMap` 方法来完成这样的需求。与普通的 `map` 不同的是,`flatMap` 可以接受一个返回类型为的操作并将其扁平化合并回原中去。 ```java import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.stream.Collectors; import java.util.stream.Stream; public class FlatMapExample { public static void main(String[] args) { List<List<Integer>> listOfLists = new ArrayList<>(); listOfLists.add(Arrays.asList(1, 2)); listOfLists.add(Arrays.asList(3, 4)); // 展开嵌套列表成为单一整数列表 List<Integer> flattenedList = listOfLists.stream() .flatMap(List::stream) .collect(Collectors.toList()); System.out.println(flattenedList); // 输出: [1, 2, 3, 4] } } ``` 这里展示了如何利用 `flatMap` 把二维结构的数据展平为一维的形[^4]。 #### 结合复杂业务逻辑进行映射 除了简单的属性提取外,还可以编写更复杂的表达式甚至自定义方法来进行更加灵活的数据变换: ```java class Student { private String name; private int age; // 构造器、getter/setter 省略... @Override public String toString() { return this.name + "(" + this.age + ")"; } public static Student createStudent(String dataString){ String[] parts = dataString.split(","); return new Student(parts[0], Integer.parseInt(parts[1])); } } // 假设有如下格的学生信息字符串:"name,age" List<String> studentData = Arrays.asList( "Alice,21", "Bob,22", "Charlie,23"); // 解析这些字符串表示的学生记录并将它们换为实际的学生对象实例 List<Student> students = studentData.stream() .map(Student::createStudent) .collect(Collectors.toList()); System.out.println(students); // 输出类似于:[Alice(21), Bob(22), Charlie(23)] ``` 这段代码演示了怎样从原始数据构建新的实体模型,这在实际应用开发过程中非常常见[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI何哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值