前言:Java8的新特性主要是Lambda表达式和流,当流和Lambda表达式结合起来一起使用时,因为流申明式处理数据集合的特点,它允许把函数作为一个方法的参数,让我们的代码更优雅简洁。
Java8最大的特性就是引入Lambda表达式,即函数式编程,可以将行为进行传递。总结就是:使用不可变值与函数,函数对不可变值进行处理,映射成另一个值。
一、巧用Stream优化老代码
如果有一个需求,需要对数据库查询到的菜肴进行一个处理:
-
筛选出卡路里小于400的菜肴
-
对筛选出的菜肴进行一个排序
-
获取排序后菜肴的名字
菜肴:Dish.java
public class Dish {
private String name;
private boolean vegetarian;
private int calories;
private Type type;
// getter and setter
}
Java8以前的实现方式
private List<String> beforeJava7(List<Dish> dishList) {
List<Dish> lowCaloricDishes = new ArrayList<>();
//1.筛选出卡路里小于400的菜肴
for (Dish dish : dishList) {
if (dish.getCalories() < 400) {
lowCaloricDishes.add(dish);
}
}
//2.对筛选出的菜肴进行排序
Collections.sort(lowCaloricDishes, new Comparator<Dish>() {
@Override
public int compare(Dish o1, Dish o2) {
return Integer.compare(o1.getCalories(), o2.getCalories());
}
});
//3.获取排序后菜肴的名字
List<String> lowCaloricDishesName = new ArrayList<>();
for (Dish d : lowCaloricDishes) {
lowCaloricDishesName.add(d.getName());
}
return lowCaloricDishesName;
}
Java8之后的实现方式
private List<String> afterJava8(List<Dish> dishList) {
return dishList.stream()
.filter(d -> d.getCalories() < 400) //筛选出卡路里小于400的菜肴
.sorted(comparing(Dish::getCalories)) //根据卡路里进行排序
.map(Dish::getName) //提取菜肴名称
.collect(Collectors.toList()); //转换为List
}
不拖泥带水,一气呵成,原来需要写24代码实现的功能现在只需5行就可以完成了,这就是Stream+Lambda表达式之美!
二、工作中常用的Stream+Lambda表达式
1、提取 List 中元素的某一字段生成新的 List
需求:想要将List中实体的某个字段的值提取出来
List<Object> newList = objectList.stream().map(Object::getVar).collect(Collectors.toList());
将object换成你的实体类即可。
//例如:想要将List中Person对象的name提取出来
List<Person> personList = new ArrayList<>();
List<String> nameList = personList.stream().map(Person::getName).collect(Collectors.toList());
2、stream将list转化为map
工作中,我们经常遇到list
转map
的案例,Collectors.toMap
就可以把一个List
数组转成一个Map
//1.key和value都是对象中的某个属性值
Map<String, String> userMap1 = userList.stream().collect(Collectors.toMap(User::getId, User::getName));
//2.key是对象中的某个属性值,value是对象本身(使用返回本身的lambda表达式)
Map<String, User> userMap2 = userList.stream().collect(Collectors.toMap(User::getId, User -> User));
//3.key是对象中的某个属性值,value是对象本身(使用Function.identity()的简洁写法)
Map<String, User> userMap3 = userList.stream().collect(Collectors.toMap(User::getId, Function.identity()));
//4.key是对象中的某个属性值,value是对象本身,当key冲突时选择第二个key值覆盖第一个key值
Map<String, User> userMap4 = userList.stream().collect(Collectors.toMap(User::getId, Function.identity(), (oldValue, newValue) -> newValue));
如果不正确指定Collectors.toMap方法的第三个参数(key冲突处理函数),那么在key重复的情况下该方法会报出【Duplicate Key】的错误导致Stream流异常终止,使用时要格外注意这一点。
举例:
public class TestLambda {
public static void main(String[] args) {
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "伟大的何哥", 18));
userInfoList.add(new UserInfo(2L, "何哥", 27));
userInfoList.add(new UserInfo(2L, "何弟", 26));
/**
* list 转 map
* 使用Collectors.toMap的时候,如果有可以重复会报错,所以需要加(k1, k2) -> k1
* (k1, k2) -> k1 表示,如果有重复的key,则保留第一个,舍弃第二个
*/
Map<Long, UserInfo> userInfoMap = userInfoList.stream().collect(Collectors.toMap(UserInfo::getUserId, userInfo -> userInfo, (k1, k2) -> k1));
userInfoMap.values().forEach(a->System.out.println(a.getUserName()));
}
}
//运行结果
伟大的何哥
何哥
类似的,还有Collectors.toList()
、Collectors.toSet()
,表示把对应的流转化为list
或者Set
。
3、filter()过滤
从数组集合中,过滤掉不符合条件的元素,留下符合条件的元素。
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "何哥", 18));
userInfoList.add(new UserInfo(2L, "何弟", 27));
userInfoList.add(new UserInfo(3L, "何妹", 26));
/**
* filter 过滤,留下超过18岁的用户
*/
List<UserInfo> userInfoResultList = userInfoList.stream().filter(user -> user.getAge() > 18).collect(Collectors.toList());
userInfoResultList.forEach(a -> System.out.println(a.getUserName()));
//运行结果
何弟
何妹
4、foreach遍历
foreach 遍历list,遍历map,真的很丝滑。
/**
* forEach 遍历集合List列表
*/
List<String> userNameList = Arrays.asList("李白", "阿珂", "娜可露露");
userNameList.forEach(System.out::println);
HashMap<String, String> hashMap = new HashMap<>();
hashMap.put("中路", "安琪拉");
hashMap.put("上路", "孙策");
hashMap.put("打野", "澜");
/**
* forEach 遍历集合Map
*/
hashMap.forEach((k, v) -> System.out.println(k + ":\t" + v));
//运行结果
李白
阿珂
娜可露露
中路: 安琪拉
上路:孙策
打野:澜
5、groupingBy分组
提到分组,相信大家都会想起SQL
的group by
。我们经常需要一个List做分组操作。比如,按城市分组用户。在Java8之前,是这么实现的:
List<UserInfo> originUserInfoList = new ArrayList<>();
originUserInfoList.add(new UserInfo(1L, "刘备", 18,"北京"));
originUserInfoList.add(new UserInfo(3L, "关羽", 26,"上海"));
originUserInfoList.add(new UserInfo(2L, "张飞", 27,"深圳"));
Map<String, List<UserInfo>> result = new HashMap<>();
for (UserInfo userInfo : originUserInfoList) {
String city = userInfo.getCity();
List<UserInfo> userInfos = result.get(city);
if (userInfos == null) {
userInfos = new ArrayList<>();
result.put(city, userInfos);
}
userInfos.add(userInfo);
}
而使用Java8的groupingBy
分组器,清爽无比:
Map<String, List<UserInfo>> result = originUserInfoList.stream()
.collect(Collectors.groupingBy(UserInfo::getCity));
6、sorted+Comparator 排序
默认升序排序
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "张三", 18));
userInfoList.add(new UserInfo(3L, "李四", 26));
userInfoList.add(new UserInfo(2L, "王麻子", 27));
/**
* sorted + Comparator.comparing 排序列表,
*/
userInfoList = userInfoList.stream().sorted(Comparator.comparing(UserInfo::getAge)).collect(Collectors.toList());
userInfoList.forEach(a -> System.out.println(a.toString()));
System.out.println("开始降序排序");
/**
* 如果想降序排序,则可以使用加reversed()
*/
userInfoList = userInfoList.stream().sorted(Comparator.comparing(UserInfo::getAge).reversed()).collect(Collectors.toList());
userInfoList.forEach(a -> System.out.println(a.toString()));
//运行结果
UserInfo{userId=1, userName='张三', age=18}
UserInfo{userId=3, userName='李四', age=26}
UserInfo{userId=2, userName='王麻子', age=27}
开始降序排序
UserInfo{userId=2, userName='王麻子', age=27}
UserInfo{userId=3, userName='李四', age=26}
UserInfo{userId=1, userName='张三', age=18}
7、distinct去重
distinct
可以去除重复的元素:
List<String> list = Arrays.asList("A", "B", "F", "A", "C");
List<String> temp = list.stream().distinct().collect(Collectors.toList());
temp.forEach(System.out::println);
8、findFirst 返回第一个
findFirst
很多业务场景,我们只需要返回集合的第一个元素即可:
List<String> list = Arrays.asList("A", "B", "F", "A", "C");
list.stream().findFirst().ifPresent(System.out::println);
9、anyMatch是否至少匹配一个元素
anyMatch
检查流是否包含至少一个满足给定谓词的元素。
Stream<String> stream = Stream.of("A", "B", "C", "D");
boolean match = stream.anyMatch(s -> s.contains("C"));
System.out.println(match);
//输出
true
10、allMatch 匹配所有元素
allMatch
检查流是否所有都满足给定谓词的元素。
Stream<String> stream = Stream.of("A", "B", "C", "D");
boolean match = stream.allMatch(s -> s.contains("C"));
System.out.println(match);
//输出
false
11、map转换
map
方法可以帮我们做元素转换,比如一个元素所有字母转化为大写,又或者把获取一个元素对象的某个属性,demo
如下:
List<String> list = Arrays.asList("jay", "tianluo");
//转化为大写
List<String> upperCaselist = list.stream().map(String::toUpperCase).collect(Collectors.toList());
upperCaselist.forEach(System.out::println);
12、Reduce
Reduce可以合并流的元素,并生成一个值
int sum = Stream.of(1, 2, 3, 4).reduce(0, (a, b) -> a + b);
System.out.println(sum);
13、peek 打印个日志
peek()
方法是一个中间Stream
操作,有时候我们可以使用peek
来打印日志。
List<String> result = Stream.of("何哥", "伟大的何哥", "何弟")
.filter(a -> a.contains("何哥"))
.peek(a -> System.out.println("测试:" + a)).collect(Collectors.toList());
System.out.println(result);
//运行结果
测试:何哥
测试:伟大的何哥
[何哥,伟大的何哥]
14、Max,Min最大最小
使用lambda流求最大,最小值,非常方便。
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "后羿", 18));
userInfoList.add(new UserInfo(3L, "鲁班", 26));
userInfoList.add(new UserInfo(2L, "虞姬", 27));
Optional<UserInfo> maxAgeUserInfoOpt = userInfoList.stream().max(Comparator.comparing(UserInfo::getAge));
maxAgeUserInfoOpt.ifPresent(userInfo -> System.out.println("max age user:" + userInfo));
Optional<UserInfo> minAgeUserInfoOpt = userInfoList.stream().min(Comparator.comparing(UserInfo::getAge));
minAgeUserInfoOpt.ifPresent(userInfo -> System.out.println("min age user:" + userInfo));
//运行结果
max age user:UserInfo{userId=2, userName='虞姬', age=27}
min age user:UserInfo{userId=1, userName='后羿', age=18}
15、count统计
一般count()
表示获取流数据元素总数。
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "吕布", 18));
userInfoList.add(new UserInfo(3L, "貂蝉", 26));
userInfoList.add(new UserInfo(2L, "董卓", 27));
long count = userInfoList.stream().filter(user -> user.getAge() > 18).count();
System.out.println("大于18岁的用户:" + count);
//输出
大于18岁的用户:2
16、字符串拼接
如果将所有学生的名字拼接起来,怎么做呢?通常只能创建一个StringBuilder,循环拼接。使用Stream,使用Collectors.joining()简单容易。
public class JoiningTest {
public static void main(String[] args) {
List<Student> students = new ArrayList<>(3);
students.add(new Student("路飞", 22, 175));
students.add(new Student("红发", 40, 180));
students.add(new Student("白胡子", 50, 185));
String names = students.stream()
.map(Student::getName).collect(Collectors.joining(",","[","]"));
System.out.println(names);
}
}
//输出结果
//[路飞,红发,白胡子]
joining接收三个参数,第一个是分界符,第二个是前缀符,第三个是结束符。也可以不传入参数Collectors.joining(),这样就是直接拼接。
17、Stream流,修改List<String> 和 List<对象>
a、修改List<String>
/**
* List<String> 无法for循环修改 用jdk8新特性 stream流
*/
List<String> list = Arrays.asList("1" , "1" ,"1" ,"1" ,"1" ,"1");
// 给 list 元素都添加 2 标识
System.out.println(list.stream().map(x -> x+2).collect(Collectors.toList()));
输出:[12, 12, 12, 12, 12, 12]
b、修改List<对象>
List<DataX> dataXES = JSON.parseArray(payload, DataX.class);
dataXES = dataXES.stream().peek(x -> x.setTss("11111"))).collect(Collectors.toList());
三、流的操作类型和常用函数式接口
流的操作类型主要分为两种:
1、中间操作
一个流可以后面跟随零个或多个中间操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的,仅仅调用到这类方法,并没有真正开始流的遍历,真正的遍历需等到终端操作时,常见的中间操作有filter、map等。
2、终端操作
一个流有且只能有一个终端操作,当这个操作执行后,流就被关闭了,无法再被操作,因此一个流只能被遍历一次,若想在遍历需要通过源数据在生成流。终端操作的执行,才会真正开始流的遍历。如下面即将介绍的count、collect等。
3、常用函数式接口
其实lambda离不开函数式接口,我们来看下JDK8常用的几个函数式接口:
-
Function<T, R>
(转换型): 接受一个输入参数,返回一个结果 -
Consumer<T>
(消费型): 接收一个输入参数,并且无返回操作 -
Predicate<T>
(判断型): 接收一个输入参数,并且返回布尔值结果 -
Supplier<T>
(供给型): 无参数,返回结果
Function<T, R>
是一个功能转换型的接口,可以把将一种类型的数据转化为另外一种类型的数据
private void testFunction() {
//获取每个字符串的长度,并且返回
Function<String, Integer> function = String::length;
Stream<String> stream = Stream.of("何哥", "伟大的何哥", "程序员何哥");
Stream<Integer> resultStream = stream.map(function);
resultStream.forEach(System.out::println);
}
Consumer<T>
是一个消费性接口,通过传入参数,并且无返回的操作
private void testComsumer() {
//获取每个字符串的长度,并且返回
Consumer<String> comsumer = System.out::println;
Stream<String> stream = Stream.of("何哥", "伟大的何哥", "程序员何哥");
stream.forEach(comsumer);
}
Predicate<T>
是一个判断型接口,并且返回布尔值结果.
private void testPredicate() {
//获取每个字符串的长度,并且返回
Predicate<Integer> predicate = a -> a > 18;
UserInfo userInfo = new UserInfo(2L, "Java后端何哥", 27);
System.out.println(predicate.test(userInfo.getAge()));
}
Supplier<T>
是一个供给型接口,无参数,有返回结果。
private void testSupplier() {
Supplier<Integer> supplier = () -> Integer.valueOf("666666");
System.out.println(supplier.get());
}
这几个函数在日常开发中,也是可以灵活应用的,比如我们DAO操作完数据库,是会有个result的整型结果返回。我们就可以用Supplier<T>
来统一判断是否操作成功。如下:
private void saveDb(Supplier<Integer> supplier) {
if (supplier.get() > 0) {
System.out.println("插入数据库成功");
}else{
System.out.println("插入数据库失败");
}
}
@Test
public void add() throws Exception {
Course course=new Course();
course.setCname("java");
course.setUserId(100L);
course.setCstatus("Normal");
saveDb(() -> courseMapper.insert(course));
}
参考链接: