机器学习 Python 环境搭建

目录

        CUDA

        Anaconda

        conda命令

        Jupyter Notebook

        PyTorch

        一些常用的包

注意:本教程仅对机器学习python环境搭建所需的下载网址和命令进行总结,适用于对机器学习环境搭建过程已有了解,需要再次快速搭建的人。

CUDA

1、查看支持CUDA的显卡:

CUDA GPU 计算能力 | NVIDIA 开发者

2、查看CUDA对应的显卡驱动:

CUDA Toolkit 12.9 Update 1 - Release Notes — Release Notes 12.9 documentation

3、CUDA下载地址:

CUDA Toolkit Archive | NVIDIA Developer

4、若安装失败,解决方法:

更新Visual Studio Installer

Anaconda

1、下载地址:

Advance AI with Open Source | Anaconda

2、下载较慢使用清华镜像网站:

清华大学开源软件镜像站 | Tsinghua Open Source Mirror

3、安装完后配置系统变量:

将安装路径下anaconda3和anaconda3\Scripts添加到系统变量的Path中。

conda命令

1、查看配置的环境:conda env list

2、创建环境:conda create -n 环境名字 python

3、切换环境:conda activate 环境名字

4、退出环境:conda deactivate 环境名字

5、删除环境:conda remove -n 环境名字 --all

6、列出环境下已经安装的包:conda list

7、安装numpy包:conda install numpy

8、查看numpy包的版本:conda search numpy

9、删除numpy包:conda uninstall/remove numpy

Jupyter Notebook

1、安装jupyter notebook:conda install notebook

2、修改打开的默认目录:

命令行中输入: jupyter notebook --generate-config

在C:\Users\账户\ .jupyter目录下生成了一个配置文件jupyter_notebook_config.py

在文件中搜索notebook_dir

在引号内填入默认打开的目录路径,并将前面的#去掉,然后保存。

3、安装中文语言包:pip install jupyterlab-language-pack-zh-cn

PyTorch

1、下载地址:PyTorch

一些常用的包

1、安装 numpy:conda install numpy

numpy 是 Python 中进行数值计算的基础库,用于数组操作、线性代数、统计等。

2、安装 pandas:conda install pandas

pandas 提供了高性能、易用的数据结构和数据分析工具,非常适合处理表格型数据。

3、安装 matplotlib:conda install matplotlib

matplotlib 是一个绘图库,可用于生成各类静态、动态、交互式图表,便于数据可视化。

4、安装 scikit-learn:conda install scikit-learn

scikit-learn 集成了众多机器学习算法,现常用PyTorch。

5、安装 tqdm:conda install tqdm

tqdm 用于显示循环进度条,在训练或数据加载过程中可以直观地观察进度。

6、安装 torchinfo:conda install -c conda-forge torchinfo

torchinfo 是一个用于展示模型结构和参数统计的工具,方便调试和查看模型细节。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值