目录
注意:本教程仅对机器学习python环境搭建所需的下载网址和命令进行总结,适用于对机器学习环境搭建过程已有了解,需要再次快速搭建的人。
CUDA
1、查看支持CUDA的显卡:
2、查看CUDA对应的显卡驱动:
CUDA Toolkit 12.9 Update 1 - Release Notes — Release Notes 12.9 documentation
3、CUDA下载地址:
CUDA Toolkit Archive | NVIDIA Developer
4、若安装失败,解决方法:
更新Visual Studio Installer
Anaconda
1、下载地址:
Advance AI with Open Source | Anaconda
2、下载较慢使用清华镜像网站:
清华大学开源软件镜像站 | Tsinghua Open Source Mirror
3、安装完后配置系统变量:
将安装路径下anaconda3和anaconda3\Scripts添加到系统变量的Path中。
conda命令
1、查看配置的环境:conda env list
2、创建环境:conda create -n 环境名字 python
3、切换环境:conda activate 环境名字
4、退出环境:conda deactivate 环境名字
5、删除环境:conda remove -n 环境名字 --all
6、列出环境下已经安装的包:conda list
7、安装numpy包:conda install numpy
8、查看numpy包的版本:conda search numpy
9、删除numpy包:conda uninstall/remove numpy
Jupyter Notebook
1、安装jupyter notebook:conda install notebook
2、修改打开的默认目录:
命令行中输入: jupyter notebook --generate-config
在C:\Users\账户\ .jupyter目录下生成了一个配置文件jupyter_notebook_config.py
在文件中搜索notebook_dir
在引号内填入默认打开的目录路径,并将前面的#去掉,然后保存。
3、安装中文语言包:pip install jupyterlab-language-pack-zh-cn
PyTorch
1、下载地址:PyTorch
一些常用的包
1、安装 numpy:conda install numpy
numpy 是 Python 中进行数值计算的基础库,用于数组操作、线性代数、统计等。
2、安装 pandas:conda install pandas
pandas 提供了高性能、易用的数据结构和数据分析工具,非常适合处理表格型数据。
3、安装 matplotlib:conda install matplotlib
matplotlib 是一个绘图库,可用于生成各类静态、动态、交互式图表,便于数据可视化。
4、安装 scikit-learn:conda install scikit-learn
scikit-learn 集成了众多机器学习算法,现常用PyTorch。
5、安装 tqdm:conda install tqdm
tqdm 用于显示循环进度条,在训练或数据加载过程中可以直观地观察进度。
6、安装 torchinfo:conda install -c conda-forge torchinfo
torchinfo 是一个用于展示模型结构和参数统计的工具,方便调试和查看模型细节。