💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一、问题定义与目标函数设计
1. 问题描述
多无人机协同路径规划需在三维空间中为每架无人机生成安全、高效且满足协同约束的路径,同时规避静态障碍物(建筑、山体)、动态威胁(其他无人机、新增障碍物)及环境限制(高度约束、转角限制)。核心挑战包括:
- 高维复杂性:nn架无人机在kk条路径中搜索,解空间达knkn级,易引发组合爆炸。
- 时空协同约束:需满足同时到达目标点的时间协同性,避免机间碰撞的空间避障,以及符合无人机动力学(最小转弯半径、爬升率)。
- 动态环境适应性:突发威胁要求算法具备在线重规划能力。
2. 多目标成本函数
目标函数需综合四项成本,通过加权求和实现多目标优化:
其中权重系数wiw依任务需求调整。具体量化方法如下:
成本项 | 量化公式 | 说明 |
---|---|---|
路径长度(Length) | ![]() | 路径点Pi间欧氏距离累加 |
高度成本(Altitude) | 惩罚超出安全高度范围[hmin,hmax]的飞行 | |
威胁成本(Threat) | ![]() | 威胁建模为圆柱体,dm越小成本越高;进入碰撞区域时成本设为无穷 |
转角成本(Turning) | ![]() | Δθ为转弯角度,Pturn为功率常数 |
二、人工蝶群算法(ABO)的核心原理
1. 生物行为模拟
ABO灵感来源于蝴蝶求偶策略,将种群分为两类:
- Sunspot群:适应度较优的个体,执行局部精细搜索(利用)。
- Canopy群:适应度较差的个体,执行全局随机探索(探索)。
通过两组交互平衡探索与利用,避免早熟收敛。
2. 算法流程
ABO路径规划流程如下:
- 初始化:随机生成蝴蝶个体(路径),每个个体包含路径节点坐标。
- 适应度评估:计算每条路径的目标函数值FF。
- 分组与行为模拟:
- Sunspot群:向当前最优个体靠近(位置更新公式含自适应步长)。
- Canopy群:随机游走或向Sunspot群学习。
- 交叉与变异:路径节点交换或随机扰动,增强多样性。
- 种群更新:保留精英个体,淘汰低适应度解。
- 终止输出:达到最大迭代次数或收敛阈值后输出最优路径。
三、ABO在路径规划中的关键技术实现
1. 协同避障机制
- 冲突消解:引入“安全距离”约束,通过调整路径节点间距确保机间无碰撞。
- 滚动时域优化(Rolling Horizon) :将全局问题分解为局部滚动窗口,降低计算复杂度。
2. 动态环境适应
- 威胁响应:实时检测新增障碍物,触发局部重规划,仅调整受影响路径段。
- 自适应参数:调整ABO的搜索步长和分组比例,提升动态场景鲁棒性。
3. 三维路径编码
- 节点表示:路径点Pi=(xi,yi,zi)Pi=(xi,yi,zi),zizi为高度变量。
- B样条平滑:对优化后路径进行平滑处理,满足无人机曲率约束。
四、ABO与传统算法的性能对比
1. 收敛速度与解质量
算法 | 平均路径长度(米) | 收敛迭代次数 | 威胁规避成功率 |
---|---|---|---|
ABO | 28.6 | 24 | 96.5% |
PSO | 30.4 | 30 | 89.2% |
GA | 30.4 | 35 | 87.8% |
|
2. 优势分析
- 全局搜索能力:分组机制避免陷入局部最优,适合高维非凸解空间。
- 参数敏感性低:较PSO(需调惯性权重)和GA(需设计交叉算子)更易实现。
- 实时性:自适应策略减少冗余计算,适合在线规划。
五、研究现状与未来方向
1. 多目标优化进展
- 加权求和法:当前主流方法,但权重设定依赖先验知识。
- Pareto前沿搜索:NSGA-II等算法可生成非支配解集,但计算开销大。
ABO的改进方向:结合Pareto排序机制,直接优化多目标解。
2. 动态场景深化
- 混合架构:ABO+快速随机树(RRT*)提升突发威胁响应速度。
- 机器学习辅助:用LSTM预测威胁运动轨迹,优化ABO的在线决策。
3. 集群协同优化
- 分层任务分配:结合元博弈论(Meta-Game)协调多机任务优先级。
- 通信约束建模:最小化通信盲区,确保集群信息共享。
六、结论
ABO算法通过模拟蝴蝶求偶行为的分组策略,在多无人机协同路径规划中展现出高效性:
- 成本优化能力:综合路径、高度、威胁、转角的多目标函数,ABO较传统算法降低总成本约6%。
- 工程适用性:MATLAB仿真验证其在复杂地形(如雄安新区配电线路)的精确规划能力。
- 未来潜力:结合动态重规划机制与多目标Pareto优化,可进一步适配军事侦察、灾害救援等强实时场景。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]谌海云,陈华胄,刘强.基于改进人工势场法的多无人机三维编队路径规划[J].系统仿真学报, 2020(3):414-420.
[2]温夏露,黄鹤,王会峰,等.基于秃鹰搜索算法优化的三维多无人机低空突防[J].浙江大学学报(工学版), 2024, 58(10):2020-2030.
[3]王文涛,叶晨,田军.基于多策略改进人工兔优化算法的三维无人机路径规划方法[J].电子学报, 2024, 52(11):3780-3797.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取