基于深度学习的目标检测:Ubuntu系统+YOLOv7环境搭建+训练自己的数据集+推理(detect) ——(1)准备+测试篇

想要体验前沿目标检测模型 YOLOv7 的强大能力,并将其应用于解决实际问题?那么,环境搭建、数据集准备、模型训练与推理这几个关键环节,便是你必须迈过的门槛。对于初学者,乃至是有一定开发经验的读者而言,从配置复杂的依赖环境,到处理特定格式的数据集,再到调试训练参数、部署模型进行预测,每一步都可能面临诸多挑战。

别担心,这篇博客正是为了解决这些痛点而来。我们将手把手带你完成 YOLOv7 的环境搭建(包括 CUDA、PyTorch 等关键组件),详解如何整理、标注并转换自定义数据集以适应 YOLOv7 的训练需求,展示如何使用训练好的模型对图像或视频进行高效的目标检测推理。

跟随本教程,你将能够完整了解 YOLOv7 项目的实战流程,从入门到部署,一步步搭建起自己的目标检测系统。

1 软件准备工作

必备:Anaconda

我自己使用的使用的是Ubuntu系统,我主要使用的是Anaconda。但是你如果想更方便的编辑一些代码或者测试一些代码,这里还推荐你安装:Pycharm,如果你不太确定需不需要可以稍后等YOLOv7安装好之后再根据需求来定,但是在这一步必须要把Anaconda安装好

关于Anaconda的安装由两种方法:

一、直接进入Anaconda的官网进行下载

在正式介绍安装之前,简单说明几句,这里安装anaconda之前是没有安装python的,因为anaconda自带python。

关于直接从官方网站下载并不太推荐,因为Anaconda官网是国外网站,下载很慢,但是有条件的朋友们可以尝试,也可以在一定程度上提高一下我们的英语水平~。~。

官网地址:https://www.anaconda.com/download

二、通过国内的清华源镜像下载

清华源网站:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

进入页面之后,会看到各版本的安装包以及它们的大小和更新日期,我们根据自己的电脑系统来选择合适自己的安装包。win系统就选-win的,苹果用户就选-mac,而我是ubuntu我就选-linux。

2 环境搭建

2.1创建虚拟环境

windows系统在下载完anconda之后,打开开始菜单,我们会看到anconda prompt。而在Ubuntu中我直接打开终端就可以。

        

自此开始我都以Ubuntu系统来开始叙述

首先,使用以下命令来查询你自己的python版本

python --version

然后你会获得如下回复

说明版本为3.12

然后使用以下命令来新建虚拟环境

conda create -n 虚拟环境名字 python=你的python版本(如3.12)

因为我们是搭建YOLOv7的环境,但是我之前已经搭建过名为YOLOv7的环境了,所以我这里使用YOLOv7-test来作为名字,这个名字可以随意你只要能记住就可以。那么我的创建虚拟环境的命令如下:

​conda create -n yolov7-test python=3.12

正常情况会显示如下:

输入y继续创建,在这之后会出现加载过程(进度条儿),加载过程完毕之后,我们输入以下命令来打开我们的虚拟环境。你自己创建的什么名字就用什么名字。

conda activate yolov7-test

出现如下情况说明虚拟环境,成功激活。前边的base变成yolov7-test,那么我们就从base环境进入到了我们所创建的虚拟环境。

2.2 安装CUDA

接下来是连个核心组成的安装,分别是CUDA和pytorch。

我们需要先安装CUDA。

在安装CUDA之前我们要先检查一下我们的电脑支持的最高版本的CUDA是多少,使用以下命令来查看。

nvidia-smi

然后我们会看到以下的情况,在右上角我们就能看到我们的CUDA的版本了。

然后进入CUDA官网:CUDA Toolkit Archive | NVIDIA Developer,选择适合自己的版本点击。

然后我们就会看到如下的界面,无论是win系统还是ubuntu系统直接按照自己电脑的实际情况根据提示进行下载就可以。

下载成功之后,在终端输入nvcc --version查看,会看到类似第二幅图的情况,这样就说明安装成功了。

nvcc --version

2.3 安装pytorch

进入pythorch官网:https://pytorch.org/get-started/locally/

在这里选择自己的系统类型,选择python,再选择自己的cuda版本,下面会生成连接,复制这个连接到你的终端运行,然后静静等待安装就可以,这个过程比较慢。如此一来,基础环境我们就已经搭建好了,接下来我们配置yolov7所需的其余环境。

如果你想安装早期的pytorch版本,在上述的页面中点击Previous PyThorch Versions即可。

3 YOLOv7运行环境配置

首先我们进入YOLOv7的源码地址:https://github.com/WongKinYiu/yolov7,点击code然后download zip下载源代码,在这里呢,我建议顺便将YOLOv7的几个权重一起下载下来

从上述页面往下滑动就可以看到五个不同的权重。

源代码下载后解压就是下面这样的,这里面的requirements.txt文件是接下来安装YOLOv7依赖的所需文件。

cd 你的源代码所在
比如我的代码包(yolov7-main)在XXA下,那么就可以这样
cd XXA/yolov7-main

我们切换的最后一个名称是我们源代码包的名称,这样我们就进入到了我们的源代码包目录下,然后使用pip安装所需依赖,指令如下。

pip install -r requirements.txt

静静等待安装完成即可,安装完成后,我们的YOLOv7的环境也就搭建完成了,下面我们来验证一下我们的安装是否成功。

4 验证环境

这个时候就要用到我刚才建议大家下载的那几个权重了,将yolov7.pt放到yolov7的根目录下,我这里也就是yolov7-main里面。(在下面第一个画红线的地方可以修改我们的权重,这个文件初始默认的是yolov7.pt,我建议直接用这个测试,省的改麻烦,等熟悉熟悉再去自己探索。)

我们就将yolov7.pt放到文件夹里之后,运行detect.py进行测试。

出现如下情况说明测试成功,也说明你的环境配置成功。测试结果会提示你保存到了那个文件夹里,可以自行查看(比如我的保存到了runs/detect/...里,我们打开看一下)。

测试结果展示

到这里,如果一切顺利的话,你的YOLOv7的环境的配置已经没有问题了,接下来就可以开始利用自己的数据集来训练自己的模型了,具体的操作方法在下一篇中详细讲述。有任何疑问欢迎在评论区留言~.~。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值