数据分析基本方法-数据归一化处理(附代码)

本文详细讲解了数据标准化的过程,包括找极值并利用极值实现数据归一化到[0,1]区间的技巧。重点介绍了标准化与归一化的应用目的,以及如何通过代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据的标准化(normalization)和归一化
数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在一些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是数据的归一化处理.(将数据统一映射到[0,1]区间)

归一化的目标

1 把数变为(0,1)之间的小数
主要是为了数据处理方便而提出来的,把数据映射到0~1范围之内处理,更加便捷快速.
2 把有量纲表达式变为无量纲表达式
归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。

原理:
在这里插入图片描述

方法:
1,找到极值

def find_the_min_and_max_of_our_data(dataset):
    min_max_list = list()
    for i in range(len(dataset[0])):
        values_in_every_column = [row[i] for row in dataset]
        the_min_value = min(values_in_every_column)
        the_max_value = max(values_in_every_column)
        min_max_list.append([the_min_value, the_max_value])
    return min_max_list

2,利用极值实现归一化

def rescale_our_data(dataset, min_max_list):
    for row in dataset:
        for i in range(len(row)):
            row[i] = (row[i] - min_max_list[i][0]) / (min_max_list[i][1] - min_max_list[i][0])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值