推荐系统学习笔记-隐语义模型

由来

该算法最早在文本挖掘领域被提出,用于找到文本的隐含语义。
核心思想是通过隐含特征(latent factor) 联系用户兴趣和物品。

在这里插入图片描述
参数
f:隐向量维度,决定隐向量表达能力强弱
n:用户数
m:物品数

求解方法:
• 特征值分解
• 奇异值分解参考这篇博客
• 梯度下降参考这篇博客

原理

基于兴趣分类的方法,可以对物品的兴趣进行分类。对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品

注意下方公式,用于表达预测值
在这里插入图片描述
• 对于一个用户,用他所有没有过行为的物品作为负样本。
• 对于一个用户,从他没有过行为的物品中均匀采样出一些物品作为负样本。
• 对于一个用户,从他没有过行为的物品中采样出一些物品作为负样本,但采样时,保证每个用户的正负样本数目相当。
• 对于一个用户,从他没有过行为的物品中采样出一些物品作为负样本,但采样时,偏重采样不热门的物品。因为一般来说,除了生活必须品,没有买的才是需要的。

采样原则:
对每个用户,要保证正负样本的平衡(数目相似)。
对每个用户采样负样本时,要选取那些很热门,而用户却没有行为的物品。

代码实现(参考)

在这里插入图片描述

为了文章的逻辑性,这里再把公式放一遍

在这里插入图片描述

结合上面的公式,我们进一步来看以下公式:

在这里插入图片描述
其中
在这里插入图片描述
是惩罚项,即是用来防止过拟合的正则化项

然后我们使用随机梯度下降算法最小化损失函数求得参数

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值