神经网络基础-神经网络补充概念-46-指数加权平均的偏差修正

本文介绍了指数加权平均(EMA)在数据量小时可能存在的偏差问题,提出通过将初始值设为第一个数据点并使用平滑因子α进行修正。给出了Python代码示例,展示了如何使用numpy和matplotlib实现带有偏差修正的EMA计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由来

指数加权平均(Exponential Moving Average,EMA)在初始时可能会受到偏差的影响,特别是在数据量较小时,EMA的值可能会与实际数据有较大的偏差。为了修正这种偏差,可以使用偏差修正方法,通常会将EMA的初始值初始化为第一个数据点,然后逐步修正。

公式

偏差修正的EMA计算公式如下:

EMA(t) = { x(t),                 if t = 0
          α * x(t) + (1 - α) * EMA(t-1),  if t > 0 }

其中,t 表示当前时刻,x(t) 表示当前时刻的数据点,α 是平滑因子。在这个偏差修正版本的EMA中,当t=0时,直接将EMA初始化为第一个数据点。

代码实现

import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
data = np.random.randn(100)

# 指数加权平均的平滑因子
alpha = 0.2

# 计算带有偏差修正的指数加权平均
ema_bias_corrected = np.zeros_like(data)
ema_bias_corrected[0] = data[0]
for t in range(1, len(data)):
    ema_bias_corrected[t] = alpha * data[t] + (1 - alpha) * ema_bias_corrected[t-1]

# 绘制原始数据和带有偏差修正的指数加权平均
plt.plot(data, label='Original Data')
plt.plot(ema_bias_corrected, label=f'EMA with Bias Correction (alpha={alpha})', color='red')
plt.legend()
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Exponential Moving Average with Bias Correction')
plt.show()

### 卷积神经网络学习机制解析 卷积神经网络(CNNs)是一种专门设计用于处理具有网格结构的数据的深层神经网络架构,比如时间序列数据中的时间线性结构、语音信号的一维频谱图以及图像的二维像素矩阵等[^3]。 #### 权重共享与局部连接特性 CNN通过引入权重共享和局部感受野的概念来减少参数数量并提高模型泛化能力。每一层内的不同位置上的神经元只与其输入区域的一个子集相连形成局部连接;而同一特征映射下的所有这些局部连接共享相同的权值集合——即所谓的滤波器或内核(kernel)[^1]。这种设置使得CNN能够在保持较高表达力的同时大幅降低计算复杂度。 #### 特征提取过程 在网络前向传播过程中,原始输入经过一系列交替排列的卷积(Convolution)操作和平滑池化(Pooling)步骤逐步被转换成抽象程度逐渐增高的表示形式: - **卷积层**:利用多个可训练的小尺寸窗口(通常为$3\times3$ 或 $5\times5$大小),在输入上滑动执行加权求和运算加上偏置项后再施加激活函数得到新的特征图; ```python import torch.nn as nn conv_layer = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3), stride=1, padding=1) ``` - **池化层**:为了进一步压缩空间维度同时保留重要信息,在每轮卷积之后往往会紧接着应用最大/平均池化(Max/Average Pooling),它会选择特定区域内最显著响应作为代表从而实现降采样效果。 #### 反向传播算法更新参数 当完成正向传递获得最终输出后,如果存在监督标签,则可通过定义损失函数衡量两者差异进而启动反向传播流程调整各层内部参数直至收敛于最优解附近。具体来说就是依据链式法则沿着误差梯度方向逐级回溯修正每一个参与计算节点处对应的权重系数及其关联偏差量直到满足预设终止条件为止[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值