【AI】Ollama+DeepSeek+AnythingLLM打造私有知识库

Ollma+DeepSeek+AnythingLLM打造私有知识库

前天有朋友问我,这个DeepSeek我部署好了,但它怎么训练呢。一句话把我搞蒙了,这玩意儿能训练吗,不都是官方提供好的模型吗?后来想了想,这不就是之前写的文章《[【AI】初体验AI大模型应用平台]》里面的Dify知识库吗,但是Dify需要一些编程知识,稍微有点门槛,我们今天就用AnythingLLM来打造私有的知识库。

需要的软件及工具

•Ollama•DeepSeek•nomic-embed-text•AnythingLLM

安装Ollama+DeepSeek

(鉴于很多朋友无法下载ollama和anythingllm,这里给大家整理好了安装包,扫描领取即可↓↓↓↓)
在这里插入图片描述

安装nomic-embed-text

nomic-embed-text主要用于文本嵌入和句子相似度任务,能够将这些任务应用于分类、聚类、检索等多种自然语言处理场景。该模型在处理短文和长文本任务方面表现出色,适用于各种NLP任务,如文本相似度计算、分类、聚类、检索。 1、拉取安装nomic-embed-textimage.png

image.png

安装AnythingLLM

AnythingLLM官网:https://anythingllm.com/

1、进入官网

image.png

2、进入下载页面,根据自己的电脑配置进行下载

image.png

3、安装时间比较长,耐心等待下

image.png

安装完成之后,直接启动

4、启动之后,点击Get started

image.png

5、进入Ollama

image.png

6、点击选择,就会出现我们部署的DeepSeek模型,点击右侧的箭头进入下一步

image.png

7、这一步类似一个免责声明,点击右侧箭头,进入下一步

image.png

image.png

8、这边我选择跳过

image.png

9、创建工作空间

image.png

10、AnythingLLM设置-LLM首选项

此处为选择大语言模型,起始设置时我们已经选择了Ollama

image.png

11、AnythingLLM设置-Embedder首选项

这边是在选择矢量模型,我们选择刚安装的nomic-embed-text,保存更改

image.png

12、工作区》设置》聊天设置,修改大语言模型提供者为DeepSeek

image.png

image.png

13、更新工作空间

image.png

14、工作区》设置》代理配置,修改大语言模型提供商为DeepSeek,并更新工作空间

image.png

image.png

知识文件

在上传文件(投喂数据)之前,我们先问下DeepSeek两个它不知道的问题

第一个问题:CodeIsPower公众号是干什么的

image.png

第二个问题:2025年2月7日股市涨了多少个点

PS:因为DeepSeek的模型数据只更新到了2023年12月份,对于之后的问题它是无法回答的

image.png

上面可以看出来对于它不知道的问题,它也确实无法回答,这个时候如果我们给它投喂一些数据呢,教教它

第一个文件:CodeIsPower简介.txt

image.png

第二个文件:2025年02月07日股市情况.txt

image.png

1、在工作区界面,点击上传两个文件

image.png

image.png

2、选择文件移动到右侧工作空间

image.png

3、保存并导入

image.png

4、更新成功

image.png

5、更新完成之后,向量数据库中显示向量数据为2

image.png

6、上传数据之后再问,来看看得到的信息

image.png

image.png

可以看到我们在上传完数据之后,DeepSeek准确的回答了相关问题,按照这个方法,我们也可以上传自己的多个文件,让DeepSeek帮你从中提取信息、总结归纳、生成内容。快来试试吧


(鉴于很多朋友无法下载ollama和anythingllm,这里给大家整理好了安装包,扫描领取即可↓↓↓↓)
在这里插入图片描述

<think>嗯,用户想了解如何通过配置和优化LM Studio与AnythingLLM来提升私有知识库问答系统的准确性。首先,我需要回忆一下这两个工具的基本功能和它们如何协同工作。LM Studio主要是用来本地运行和微调大型语言模型的,而AnythingLLM则是一个支持文档交互的AI应用,可以将文档转化为上下文信息供LLM使用。 接下来,用户提到的准确性提升需要从多个方面考虑。首先是模型的选择,比如是否使用Llama 3、Mistral或者BGE-M3这样的向量模型。然后是文档预处理,比如分块策略和元数据标注,这可能会影响检索效果。还有检索优化,比如调整向量相似度的阈值或使用混合检索方法。此外,可能还需要调整LLM的生成参数,比如温度和top_p值,来控制回答的多样性和准确性。 另外,用户提供的引用中有提到BGE-M3模型在多语言和多功能方面的优势,可能需要建议用户使用这个模型来提升向量检索的准确性。还有关于AnythingLLM支持多用户管理和不同LLM的配置,可能需要指导用户如何正确设置这些选项。 需要注意的是,配置步骤可能包括安装和配置LM Studio、导入模型、设置API,以及在AnythingLLM中选择合适的LLM和向量数据库。优化部分可能涉及调整分块大小、测试不同的检索策略,以及持续监控和迭代。 可能还需要考虑如何结合RAG(检索增强生成)系统,确保检索到的文档片段与问题相关,从而提升生成答案的准确性。此外,用户可能对性能分析或具体应用场景有后续问题,需要准备好相关的问题建议。 最后,要确保回答结构清晰,按照配置步骤和优化方法分点说明,并引用相关的资料来支持建议,比如引用BGE-M3的优势和AnythingLLM的可配置性。同时,检查是否符合系统级指令,如正确使用LaTeX格式和生成相关问题。</think>### 如何配置和优化LM Studio与AnythingLLM提升私有知识库问答准确性 #### 一、基础配置流程 1. **LM Studio本地模型部署** - 安装最新版LM Studio后,通过`ollama pull bge-m3`拉取BGE-M3多语言向量模型[^5] - 选择适合任务的LLM,推荐使用支持长文本的模型如Llama3-70b或Mistral-7B - 在`server_config.yaml`中设置API端口: ```yaml api_endpoint: "http://localhost:11434/v1" ``` 2. **AnythingLLM系统集成** - 在Workspace设置中选择"Custom LLM"并绑定LM Studio的API地址 - 向量数据库配置建议: - 使用BGE-M3生成1024维稠密向量[^5] - 设置分块大小为512-1024 tokens(通过`chunk_size`参数调整) #### 二、核心优化策略 1. **文档预处理优化** - 应用滑动窗口算法(公式:$S_{overlap} = \lfloor 0.3 \times S_{chunk} \rfloor$)减少信息断层 - 添加元数据标注: ```json { "doc_type": "技术手册", "version": "2.3", "keywords": ["配置", "API"] } ``` 2. **检索增强生成(RAG)调优** - 设置混合检索权重: $$Score_{final} = 0.7 \times Sim_{vector} + 0.3 \times BM25$$ - 动态调整相似度阈值(建议初始值:$\theta=0.65$) 3. **LLM生成参数调整** | 参数 | 推荐值 | 作用域 | |---------------|--------|----------------| | temperature | 0.3 | 控制随机性 | | top_p | 0.9 | 核采样阈值 | | max_new_tokens| 1024 | 响应长度限制 | #### 三、高级调试技巧 1. 通过Cherry Studio监控API调用链路,分析时延分布: $$P_{latency} = \frac{1}{N}\sum_{i=1}^{N}t_i$$ 其中$t_i$表示第i次请求响应时间 2. 使用DeepSeek的评估工具包进行答案质量评分,建议重点关注: - 事实准确性(通过$Accuracy = \frac{N_{correct}}{N_{total}}$计算) - 上下文相关性(余弦相似度$Sim_{cos}(A,Q) \geq 0.7$) #### 四、典型问题排查 当出现幻觉回答时: 1. 检查向量数据库的`k`值(建议初始值:k=5) 2. 验证文档分块是否包含完整语义单元 3. 在LM Studio中尝试调整`repeat_penalty`参数(推荐值:1.2)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值