一文带你了解大模型到底有哪些具体岗位?看这一篇就够了!

如今大模型技术越来越火,很多人都想进入这个领域找份好工作。但大模型方向的岗位五花八门,不少人都看得一头雾水。别担心!今天就用大白话,带你认识大模型方向的具体岗位,看看哪个适合你!

请添加图片描述

一、搞研发、搭框架的 “大模型建筑师”

大模型研发工程师

请添加图片描述

大模型研发工程师就像是大模型世界的 “总设计师” 和 “施工队长”,他们的工作贯穿大模型研发的整个流程。从一开始设计大模型的整体方案,到处理数据、设计算法模型,再到开发、训练、部署、调试和评测模型,每一步都需要他们亲自操刀。比如在数字孪生政务场景中,他们要设计能理解政策、回答群众问题的大模型架构,开发支持空间语境识别的功能,还要搭建反馈学习机制,让模型越用越聪明。想干这行,得熟悉 TensorFlow、PyTorch 这些深度学习框架,懂知识图谱和数据建模,还要掌握 prompt engineering、LoRA 等技术,能把业务需求变成模型可以理解的 “语言”。

招聘要求:通常需要计算机、数学、统计学等相关专业本科及以上学历;熟练掌握至少一种编程语言,如 Python;有扎实的机器学习、深度学习理论基础;熟悉主流深度学习框架,有大模型开发、优化经验者优先;具备良好的问题解决能力和团队协作能力 。

机器学习平台研发工程师

请添加图片描述
这个岗位专注于大模型工程技术,就像是搭建 “模型工厂” 的工人。他们要研究最前沿的机器学习、自然语言处理等技术,让大模型训练得又快又好。他们会开发各种工具和框架,把主流大模型整合到平台里,方便团队使用。比如给模型训练提供高性能计算支持,开发模型微调工具等。这个岗位要求熟悉深度学习框架,理解算法原理,还得有把技术落地到实际业务中的能力。

招聘要求:计算机相关专业本科及以上学历;熟悉 Linux 环境,熟练使用 C++、Python 等编程语言;深入理解机器学习、深度学习算法;有分布式系统、云计算相关经验;对技术有热情,具备快速学习和创新能力。

二、玩算法、解难题的 “技术高手”

大模型算法专家

请添加图片描述

大模型算法专家是算法界的 “大神”,他们不仅要参与大模型研发,还得推动模型在实际业务里发挥作用。比如把大语言模型优化后用到智能电销里,让机器客服更好地和客户沟通。他们还要探索新技术,把好的算法经验沉淀下来,写成专利和论文,在行业里分享自己的成果。一般需要硕士以上学历,有多年机器学习、深度学习相关经验,熟悉前沿算法,最好在顶尖学术会议上发表过论文。

招聘要求:计算机、数学等相关专业博士学历优先,硕士学历需有 5 年以上相关工作经验;精通深度学习算法,熟悉 Transformer、Diffusion 等模型架构;有大模型开发、优化成功案例;具备良好的学术研究能力和技术创新能力;有团队管理经验者更佳。

算法工程师

请添加图片描述

算法工程师是解决实际问题的 “小能手”。不管是金融行业防诈骗,还是电商给你推荐喜欢的商品,都有他们的功劳。他们的工作就是把书本上的算法,变成能在电脑上跑起来的程序。这需要扎实的数学基础,会分析问题,能根据不同需求选对算法,还得会调试和优化算法,让它在实际场景里高效运行。

招聘要求:计算机、数学等相关专业本科及以上学历;熟练掌握线性代数、概率论等数学知识;精通 Python 编程,熟悉至少一种机器学习库;有算法开发、优化经验;有良好的逻辑思维和沟通能力。

三、和数据打交道的 “宝藏猎人”

数据科学家

数据科学家就像在数据海洋里寻宝的人。他们要用大模型分析数据,预测未来趋势,给公司决策提供依据。工作内容包括清洗杂乱的数据,从数据里提取有用的信息,训练模型找到数据规律,最后还要把模型结果解释清楚,让领导和同事都能听懂。比如分析用户购物数据,预测哪些商品会热卖;分析市场数据,给公司制定营销策略。这个岗位要求有多年工作经验,熟悉 AI 和统计知识,会用 Python、SQL 处理数据,还要有扎实的机器学习建模能力。

招聘要求:统计学、计算机等相关专业硕士及以上学历;熟练使用 Python、R 等数据分析工具,精通 SQL;有数据清洗、特征工程、模型训练经验;熟悉常见机器学习、深度学习算法;具备良好的数据分析和业务理解能力,能将数据转化为业务决策建议。

四、管产品、促落地的 “协调员”

AI 产品经理

请添加图片描述

AI 产品经理是连接技术和市场的 “桥梁”。他们要去了解市场上需要什么样的 AI 产品,比如设计一款智能音箱,就得先研究用户喜欢什么功能。然后制定产品规划,协调技术团队开发,把控项目进度,确保产品按时上线。他们既要懂技术,能和工程师沟通,又要懂市场,能抓住用户需求,是个综合性很强的岗位。

招聘要求:本科及以上学历,计算机、市场营销等相关专业优先;有 2 年以上产品经理工作经验,有 AI 产品经验者优先;熟悉 AI 技术基础知识,了解机器学习、大模型基本原理;具备良好的市场调研、需求分析能力;有优秀的沟通协调和项目管理能力。

五、专注深度学习的 “模型大师”

深度学习工程师

请添加图片描述

深度学习工程师专注于研究深度神经网络,是处理图像、视频、音频数据的 “专家”。比如开发能识别道路和障碍物的自动驾驶模型,或者能实现语音唤醒的智能语音助手。他们得精通 CNN、RNN、GAN 这些深度学习模型,有处理大量数据的经验,熟练使用深度学习框架,还要懂 GPU 加速和模型优化技巧,让模型又快又准。

招聘要求:计算机、电子信息等相关专业本科及以上学历;精通 Python 编程,熟悉 TensorFlow、PyTorch 等深度学习框架;深入理解 CNN、RNN 等深度学习模型;有图像、语音等数据处理项目经验;具备良好的代码编写和调试能力,对技术有钻研精神。

六、不同领域特色大模型岗位

医疗大模型研发专员

在医疗领域,大模型可以辅助疾病诊断、药物研发等。医疗大模型研发专员就像是 “医疗技术革新者”,他们要结合医学知识和大模型技术,开发能读懂病历、分析医学影像、预测疾病发展的模型。比如研发出的模型能从患者的 CT 影像中识别出早期肺癌的特征,帮助医生更准确地诊断疾病;或者在药物研发过程中,利用模型预测药物分子的活性,加速新药研发进程。

招聘要求:医学、计算机相关专业本科及以上学历,有医学和计算机交叉背景优先;熟悉医疗数据结构,了解常见疾病诊断标准;掌握深度学习框架,有医学图像处理、自然语言处理项目经验;具备良好的医学伦理意识,能严谨对待医疗数据。

教育大模型内容设计师

教育大模型内容设计师是 “个性化学习方案的创造者”。他们要根据不同年龄段、不同学习水平的学生特点,利用大模型设计出个性化的学习内容和课程。比如针对数学薄弱的小学生,设计出有趣又有效的数学练习题和讲解视频;为准备高考的学生,生成精准的知识点总结和模拟试卷。此外,还得通过大模型分析学生的学习数据,了解学生的学习进度和难点,及时调整学习内容。

招聘要求:教育学、计算机相关专业本科及以上学历;熟悉教育理论和课程设计方法;了解大模型在教育领域的应用,有一定的数据分析能力;有教学经验或教育产品设计经验者优先;具备创新思维,能设计出有趣、有效的学习内容。

金融大模型风险评估师

金融大模型风险评估师如同 “金融安全卫士”,主要利用大模型对金融市场的风险进行评估和预测。比如分析企业的财务数据、信用记录,预测企业的违约风险;研究股票、债券市场的历史数据,预测市场波动风险。他们还需要根据市场变化,不断优化风险评估模型,为金融机构的投资决策、贷款审批等提供可靠依据。

招聘要求:金融、数学、统计学、计算机等相关专业本科及以上学历;熟悉金融市场运作和金融产品;精通数据分析和机器学习算法,有金融风险评估项目经验;了解金融法规和监管要求;具备较强的逻辑分析能力和风险意识。

智能客服大模型优化师

智能客服大模型优化师就像 “智能客服的升级专家”。他们的工作是让智能客服更 “聪明”,能更好地理解用户的问题,给出准确、贴心的回答。比如优化智能客服模型,让它能识别用户不同的提问方式,即使问题表述模糊,也能理解用户需求;或者针对用户的投诉,通过模型分析快速找到解决方案。同时,还需要收集用户反馈,不断改进智能客服的服务质量。

招聘要求:计算机、自然语言处理相关专业本科及以上学历;熟悉自然语言处理技术和大模型原理;有文本分类、问答系统开发经验;具备良好的沟通能力和用户需求分析能力;有客服系统优化或相关项目经验者优先。

这些大模型方向的岗位各有特点,有的靠技术吃饭,有的需要沟通协调能力,还有的要在数据里 “挖宝”。如果你对大模型感兴趣,不妨对照这些岗位要求,看看自己适合哪一个,然后朝着目标努力,说不定下一个大模型领域的 “大佬” 就是你!

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

MeshFlow模型实现高效多帧去噪的核心在于其能准确地估计视频帧间的运动并进行空间平滑处理。以下是实现该模型的具体步骤: 参考资源链接:[MeshFlow视频降噪算法:一种高效清洁视频的方法](https://wenku.csdn.net/doc/1suk9eb43n?spm=1055.2569.3001.10343) 1. 构建2D网格:在视频帧上构建一个2D网格结构,网格的顶点用于定义运动矢量。 2. 运动矢量估计:使用图像角点追踪技术,在连续帧间估计运动矢量。这些运动矢量只在2D网格的顶点处定义,形成一个稀疏运动场。 3. 运动矢量传播:将得到的运动矢量转移到相邻的网格顶点,使得每个顶点可以累积其周围特征的多个运动信息。 4. 空间平滑处理:通过空间平滑,将稀疏的运动场转换为更密集的表示形式,从而使得每帧的运动信息更加连续和平滑。 5. 帧对齐:利用估计的运动模型,将连续帧对齐,为后续的帧融合做准备。 6. 多帧融合:在滑动时间窗口内,将对齐的帧进行时间和空间上的融合,生成去噪帧。由于利用了多个帧的信息,这个过程可以增强视频信号,同时降低噪声。 7. 生成最终降噪视频:通过上述步骤,从融合后的帧中提取出最终降噪后的视频。 MeshFlow模型的优势在于其轻量级结构和非参数形式,它能适应空间变化的运动特性,并且不需要进行复杂的异常值剔除操作。这就使得视频降噪过程更加高效和精确。结合MeshFlow模型的这些特性,视频降噪不仅提高了准确性和效率,而且在光线不足的环境下也能保持较好的视频质量。如果你希望深入了解MeshFlow模型在视频降噪中的应用,建议阅读《MeshFlow视频降噪算法:一种高效清洁视频的方法》一文,该文详细介绍了MeshFlow模型的理论基础及其在视频降噪中的具体实施。 参考资源链接:[MeshFlow视频降噪算法:一种高效清洁视频的方法](https://wenku.csdn.net/doc/1suk9eb43n?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值