- 博客(1157)
- 收藏
- 关注

原创 盘点50个AI大模型企业和典型产品
ChatGPT:是OpenAI推出的非常具有影响力的聊天机器人程序,能够进行自然流畅的对话、文本创作、问题解答等,不断迭代升级,引发了全球对大模型的广泛关注。- GPT-4O:OpenAI的新一代AI模型,在语言理解和生成能力上有进一步提升,能够感知用户的情绪,并针对问题以带有情绪的“嗓音”做出反馈。- Sora:文生视频大模型,可根据文本指令生成复杂且具有一定时长的视频,具有多个镜头、准确的角色和视觉风格保留等特点,但仍在开发完善中。
2024-10-10 16:54:30
3539

原创 9款GPU横评,哪些适合大模型训练,哪些适合推理任务?
在 AI 领域,有两大场景对 GPU 的需求最大,一个是模型训练,另一个是 AI 推理任务。但是很多人多可能在最开始为自己的项目做 GPU 选型时,都很难判断哪些 GPU 适合做模型训练,哪些 GPU 更适合去做推理任务。所以我们通过这篇文章将基于 GPU 指标来帮助大家对比分析NVIDIA 的 H100、A100、A6000、A4000、V100、P6000、RTX 4000、L40s、L4 九款GPU,哪些更推荐用于模型训练,哪些则更推荐用于推理。
2024-09-24 15:10:47
9797

原创 大模型学习路线(超全面!超详细!)收藏这一篇就够了!
在深度学习领域,"大模型"通常指的是模型参数数量庞大、拥有深层结构的神经网络。这些模型的规模通常表现为网络中的参数数量,即模型中需要学习的权重和偏置的数量。具体来说,大模型可能包含数百万到数十亿的参数。
2024-09-23 11:59:31
4052

原创 深度学习必备框架:7步轻松搞定 Pytorch 基础!
接下来我们定义网络结构,由于是图像分类任务,因此我们的节点维度使用逐步降低的定义。nn.Flatten(), # 将维度转换为二维nn.Linear(784, 256), # 全连接层nn.ReLU(), # 激活函数nn.Linear(256, 10) # 全连接层。
2023-01-30 10:02:57
2797
原创 小白也能懂的 RAG 进阶:传统方案与 GraphRAG 技术拆解、对比及融合用法
小白也能懂的 RAG 进阶:传统方案与 GraphRAG 技术拆解、对比及融合用法
2025-09-19 11:15:00
494
原创 RAG知识库瓶颈破解:这套文档清洗流程,让“废料“变黄金
文章探讨了RAG知识库"垃圾进,垃圾出"的瓶颈,提出系统文档预处理流程:格式转换、深度整理(构建父子分块)、问答对生成和质量评估。作者分享实践经验,分析Dify 2.0知识流水线设计理念,强调尽管未来可能简化,但目前文档预处理仍是构建有效RAG知识库的关键。
2025-09-18 22:15:00
682
原创 MCP交互大模型完全指南:从入门到精通(程序员必备,建议收藏)
本文介绍了MCP与大模型交互的两种方式:通过系统提示词(tools字段)和用户提示词(messages字段)。tools方式更规范高效,适用于支持function call的大模型;messages方式更灵活但稳定性较差。文章还概述了影响大模型的四种方式,并预告后续将围绕MCP架构落地的关键问题展开讨论。最后提供了大模型学习资料福利,包含系统学习路线、实战项目、必看书籍和面试题等资源。
2025-09-18 22:00:00
405
原创 零基础掌握大模型智能体:设计模式与应用层次详细教程(收藏必看)
大模型智能体开发指南:从入门到进阶 本文系统介绍了大模型智能体的开发方法论,包含5种核心设计模式(反思、工具使用、ReAct、规划、多智能体)和5个应用能力层次(基础响应→路由→工具调用→多智能体→自主)。文章强调开发过程中需注重记忆机制和安全护栏建设,并提供了: 从基础到高阶的渐进式学习路径 三个典型场景的实战配方 常见问题的规避方案 建议开发者先掌握基础能力,再逐步引入高级模式,最终实现复杂业务场景的智能化落地。文末附有包含学习路线、实战项目和面试题库的完整学习资料包。 (字数:149字)
2025-09-18 21:30:00
756
原创 程序员必看!10 分钟搞懂爆火本地知识库,吃透基本概念 + RAG 完整架构
程序员必看!10 分钟搞懂爆火本地知识库,吃透基本概念 + RAG 完整架构
2025-09-18 11:15:00
1126
原创 Transformer架构大白话:从原理到瓶颈,助你成为大模型专家(建议收藏)
Transformer架构大白话:从原理到瓶颈,助你成为大模型专家(建议收藏)
2025-09-18 10:45:00
769
原创 大模型开发必看:Dify节点异常处理全解析,提升系统稳定性的实战指南(建议收藏)
摘要:Dify流程编排中节点异常处理的五大核心策略包括:1)智能重试与多模型兜底机制,设置3次重试间隔5秒,支持自动切换备用模型;2)预设默认输出防止流程中断;3)设计异常分支流转优化用户体验;4)采用参数调优(Temperature归零)、提示工程和模型验证等多重手段减少模型幻觉;5)构建实时监控平台实现自动化告警运维。通过系统化的异常处理框架,有效保障大模型应用的稳定性和可靠性。(150字)
2025-09-17 22:45:00
837
原创 AI Agent从入门到精通:概念原理+开发实践全攻略
本文全面介绍AI Agent的概念原理、工作架构与开发实践。AI Agent作为具备自主性、反应性、主动性和社交性的智能系统,通过感知-思考-行动-反馈的循环实现复杂任务。文章详细解析了其核心架构模块,并结合数据分析案例展示了开发流程,同时探讨了在客户服务、企业自动化等领域的应用价值。为开发者提供了从理论到实践的完整指南,是理解AI Agent技术的重要参考。
2025-09-17 21:45:00
824
原创 用大语言模型构建智能简历筛选系统,从入门到精通的实战指南
本文提出了一种基于大语言模型(LLM)的智能简历筛选系统解决方案,通过多阶段筛选流程实现高效精准的人才匹配。系统采用"语义检索初筛+硬性条件过滤+多维度评分"的漏斗式筛选机制,结合简历结构化解析、元数据提取、向量索引等关键技术。相比传统方法,该系统支持自然语言交互,能量化评估匹配度并给出分析建议,有效解决了人工筛选效率低、不智能等痛点。测试表明,该方案显著提升了招聘流程的效率和准确性,为HR决策提供了智能化支持。
2025-09-17 18:10:12
778
原创 搞懂 AI 原生应用开发:AI Agent 核心架构拆解 + Workflow / 多 Agent / 上下文工程实践
搞懂 AI 原生应用开发:AI Agent 核心架构拆解 + Workflow / 多 Agent / 上下文工程实践
2025-09-17 10:30:00
1830
原创 一文读懂大模型与智能体:从核心差异到共生逻辑,解锁下一代 AI 应用密码
一文读懂大模型与智能体:从核心差异到共生逻辑,解锁下一代 AI 应用密码
2025-09-17 09:45:00
849
原创 【值得收藏】深入浅出RAG技术:程序员必备的检索增强生成全攻略
本文系统介绍了检索增强生成(RAG)技术的核心流程与优化方法。从基础RAG的文档分块、向量化索引构建到查询处理,到高级RAG技术如层次索引、假设性问题生成(HyDE)、上下文增强策略(句子窗口检索和自动合并检索),再到融合检索方法(结合关键词与语义搜索)。文章还提及了提示工程优化、多种LLM选择及评估技术,为开发者提供了全面的RAG实现指南,旨在提升检索准确性和生成质量。这些技术可灵活组合,适用于不同场景的需求。
2025-09-16 21:45:00
948
原创 大模型RAG技术精讲:查询扩展与多模态GraphRAG页面逻辑方案详解,值得收藏
文章系统梳理了知识图谱增强的查询扩展技术,包括KGQE、CL-KGQE、KAR和QSKG等方法,通过实体链接、关系挖掘和动态图谱构建提升检索效果。同时介绍了MoLoRAG方案,通过页面图构建和多跳推理解决长文档理解中页面逻辑连接缺失问题,结合VLM评分和微调实现精准检索。两类技术均强调控制知识注入粒度、去噪优化和跨语言适配等关键点,为提升大模型检索能力提供了实用方法论。
2025-09-16 19:45:00
805
原创 从入门到精通:AI Agent三大核心痛点详解(收藏必学)- 知识库+工作流+Prompt工程
AI Agent设计核心:知识库、工作流与Prompt工程 本文系统剖析构建高效AI Agent的三大关键要素:知识库建设采用混合存储架构(向量+图数据库)实现语义与关联检索;工作流设计通过任务分解与循环反思机制提升复杂任务处理能力;Prompt工程聚焦角色精准定位与输出格式控制。文章详细介绍了知识收集、存储优化(Milvus+Neo4j)、多策略检索组合等实用技术,以及工作流自动化编排方法,为开发者提供了一套完整的AI Agent构建框架与优化思路。
2025-09-16 18:15:00
577
原创 程序员入门:LLM、Prompt、AI Agent、RAG 到底是什么?一文读懂!
程序员入门:LLM、Prompt、AI Agent、RAG 到底是什么?一文读懂!
2025-09-16 12:30:00
921
原创 收藏必备!从零开始学AI Agent:大模型与智能体的区别,以及如何亲手搭建一个(新手友好)
收藏必备!从零开始学AI Agent:大模型与智能体的区别,以及如何亲手搭建一个(新手友好)
2025-09-16 11:45:00
770
原创 揭秘AI Agent本质:从软件工程到Agent开发的必读指南,建议收藏!
AI Agent本质是工程实践而非魔法,其发展经历了从流程图到DAG编排器再到机器学习模型的演变。当前Agent存在上下文窗口过长导致性能下降的局限,推荐采用"微型Agent"模式——将多个职能单一的小Agent嵌入传统DAG流程。有效的Agent工程需要控制prompt设计、管理上下文、规范执行流程并保留人工干预能力,应像构建传统软件一样构建Agent。文章强调AI不是万能解决方案,需要结合工程思维将复杂问题模块化、确定性最小化。
2025-09-15 22:15:00
834
原创 ReAct模式详解——让大模型从“问答机“到“问题解决者“的必学技术
ReAct模式通过"思考-行动-观察"循环,赋予大型语言模型自主规划与工具调用能力,使其从静态知识库转变为动态问题解决者。该模式弥补了LLM在知识时效性、计算能力和环境交互方面的局限,但实践中仍面临提示词脆弱性、上下文管理、工具可靠性等挑战。ReAct相比Chain of Thought更强调与外部世界的交互,是实现真正通用人工智能的重要一步。
2025-09-15 19:30:00
1177
原创 RAG系统6种查询翻译策略详解,让你的检索效果提升80%
本文系统介绍了RAG系统预检索优化中的六大查询翻译策略:查询重写、多查询、RAG融合、查询分解、回溯提示和假设文档嵌入。这些方法通过优化用户查询,提升检索相关性,解决查询模糊、表达不规范等问题。每种策略均有独特优势,如查询重写适合口语化表达,多查询提高召回率,RAG融合优化结果排序等。文章提供核心思想、优势分析及代码实现,帮助开发者根据场景灵活选择组合,实现更精准的信息检索。这些技术可有效缩小查询与文档的语义差距,提升RAG系统整体性能。
2025-09-15 18:15:00
739
原创 想做 AI 落地却没方向?普通人 & 程序员看过来,AI Agent 就是最优解!
想做 AI 落地却没方向?普通人 & 程序员看过来,AI Agent 就是最优解!
2025-09-15 15:29:43
1071
原创 【深度学习必藏】神经网络层数选择:为什么不是越深越好,如何找到最佳平衡点
神经网络深度并非越深越好,需平衡表示能力与泛化风险。深层网络能提取高阶特征但面临过拟合、梯度消失和计算成本问题。最佳深度取决于数据规模、任务复杂度及正则化策略。实践建议从浅层逐步增加,结合迁移学习和架构创新,避免盲目追求深度。
2025-09-13 20:30:00
832
原创 大模型知识库优化秘籍:RAGFlow+TextIn提升文档解析性能实战
本文介绍了提升RAG系统性能的两种文档解析方法,重点对比开源与商业化工具的优劣。TextIn xParse凭借高精度解析、行业领先的表格识别和阅读顺序还原能力脱颖而出。文章详细演示了在RAGFlow框架中集成自定义解析工具的两种方案:直接上传解析结果或修改代码实现深度集成,后者能更好地保留文档结构信息。通过实际案例展示了优化解析环节对提升知识库质量和问答效果的关键作用。
2025-09-13 19:45:00
925
原创 让大模型乖乖听话!这套结构化Prompt框架让小白也能轻松掌握,收藏学习必看!
本文系统介绍了编写高质量长提示词的结构化方法论,提出"角色/任务+核心原则+上下文处理+CoT+输出规范+Few-Shot"的黄金框架。作者分享了借助大模型生成和优化Prompt的实用技巧,包括准备测试集、分析错误原因等。文章详细解析了每个模块的编写要点,特别强调CoT思维链对提升复杂任务准确率的关键作用(可达20%提升),并建议用伪代码表达复杂逻辑。这套方法已成功应用于高精度要求的数据分析场景,帮助普通用户也能编写出专业级提示词,有效解决大模型在精准任务中的表现问题。
2025-09-13 18:45:00
528
原创 AI 浪潮挡不住!大模型就业市场 “疯” 了,小白 & 程序员快冲,别错过风口!
AI 浪潮挡不住!大模型就业市场 “疯” 了,小白 & 程序员快冲,别错过风口!
2025-09-13 15:12:01
778
原创 【技术干货】HIRAG分层思维:提升RAG性能的终极指南
HIRAG创新性地提出分层思维指令微调方法,通过"过滤-组合-推理"三级能力训练,有效解决传统RAG系统信息利用不足的痛点。实验证明,该方法使8B小模型在多个任务上媲美甚至超越70B大模型,特别是在复杂推理任务中表现突出。这一突破不仅验证了分层思维训练的有效性,更为优化RAG系统性能提供了新范式,未来在动态能力适配、多轮推理扩展等方面具有广阔的研究空间。
2025-09-12 22:30:00
580
原创 【值得收藏】一文吃透GraphRAG四大搜索策略,提升大模型应用能力
本文介绍了GraphRAG的四种搜索策略及其应用场景。基础搜索实现传统向量RAG,适合简单事实查询;本地搜索利用知识图谱增强检索,擅长处理实体关系问题;全局搜索采用Map-Reduce架构解决数据集级宏观问题;漂移搜索则动态结合全局与局部优势,实现渐进式深度查询。每种策略都有特定优化:基础搜索直接使用文本片段,本地搜索融合多源信息,全局搜索处理社区报告,漂移搜索则通过HyDE和Deep Research技术模拟人类分析过程。合理选择策略可显著提升问答效果。
2025-09-12 21:30:00
844
原创 程序员必看!多模态与RAG结合实战:收藏这篇避免踩坑指南
《多模态与RAG系统结合应用实践指南》 本文深入探讨了多模态模型与RAG系统结合的实践挑战。作者指出虽然多模态理论上应支持多种数据输入输出,但现实中多数模型仅支持有限模态(如文本转语音、图片理解等),真正支持全模态的模型较少。传统RAG系统将所有数据转为文本会丢失信息,而多模态应用面临如何保持不同模态数据间关联关系的难题。实践发现,现有解决方案多采用单独处理不同模态数据的方式,未能有效维护数据间的内在联系。文章揭示了多模态RAG系统实现远比理论复杂,需要更多实践探索和经验积累,为开发者提供了宝贵的避坑指南。
2025-09-12 20:45:00
653
原创 小白必看:检索增强生成(RAG)技术解析与主流开源项目指南
当前主流RAG开源项目已形成差异化竞争格局:部分项目聚焦文档解析与工业级部署(如RAGFlow),部分侧重开发灵活性与生态扩展(如LangChain),还有项目专注于性能优化与实时性(如TurboRAG),覆盖了从个人开发到企业级应用的全场景需求。在应用领域上,RAG技术已深度渗透医疗、金融、法律、教育、电商等行业,成为解决LLM“知识滞后”“幻觉”问题的核心方案。多模态融合深化。
2025-09-12 15:40:15
1020
原创 Transformer架构深度解析:大模型开发必备知识点(收藏)
本文系统介绍了Transformer神经网络架构的核心模块及其PyTorch实现。作为现代大模型的基础,Transformer通过多头注意力机制建立词间全局依赖,摆脱了传统循环结构的限制。文章详细解析了输入嵌入层(含位置编码)、自注意力层、前馈网络层等关键组件,以及残差连接和层归一化两项提升训练稳定性的技术。每个模块都配有数学公式说明和PyTorch实现代码,其中位置编码采用正弦余弦函数实现词序感知,自注意力机制通过查询-键-值三元组建模上下文关系。全文通过模块化拆解和代码示例,为理解Transformer
2025-09-11 22:15:00
1825
原创 收藏必备 | Python零基础手撕RAG:9大实战技巧从入门到精通,拒绝调包掌握大模型检索增强生成核心原理
本文详细介绍了如何从零开始用Python实现RAG(检索增强生成)系统,包含数据导入、文本分块、向量化等核心步骤。重点讲解了9大实战技巧:1)基于语义的文本分块方法;2)上下文增强检索技术;3)给文本块添加标题(CCH)提升上下文关联性。通过逐行代码解析,帮助开发者深入理解RAG底层原理,避免直接调用封装库,真正掌握大模型检索增强生成的核心技术,有效提升回答质量和系统性能。
2025-09-11 21:15:00
671
原创 【必学收藏】多模态与RAG结合:从理论到实践的复杂挑战与解决方案
本文探讨了多模态模型在RAG系统中的实际应用挑战。作者发现,虽然理论上多模态能处理文本、图像、视频等多种数据,但现有模型大多仅支持有限模态。将多模态应用于RAG时,面临数据关联性维护、跨模态召回等难题。实践表明,多模态RAG的实现比理论更复杂,需要深入解决不同模态数据的整合与检索问题。作者建议开发者应更全面地理解多模态技术,而非仅停留在理论认知层面。
2025-09-11 20:30:00
659
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人