一、LLM Agent
什么是LLM Agent?
大模型Agent是基于大型语言模型(LLM)开发的智能代理系统,其核心特征在于环境交互感知、自主认知分析、策略生成与任务执行的多维能力整合。
作为模拟人类决策链路的智能实体,Agent能够动态调度多样化工具资源,通过迭代优化实现既定任务目标。
从技术实现视角看,Agent体系完成了由流程驱动到目标驱动的范式升级,依托感知-推理-执行的闭环架构,有效处理高复杂度操作需求。
大模型Agent的运作框架包含规划、记忆、工具与行动四个核心模块,各模块功能明确:规划模块专注于任务分解与方案评估,记忆模块承担知识存储与信息调用的职责,工具模块实现环境感知与决策支持,行动模块则负责将认知结果转化为具体执行。
1、规划(Planning)
定义:规划是Agent的思维模型,负责拆解复杂任务为可执行的子任务,并评估执行策略。
实现方式:通过大模型提示工程(如ReAct、CoT推理模式)实现,使Agent能够精准拆解任务,分步解决。
2、记忆(Memory)
定义:记忆即信息存储与回忆,包括短期记忆和长期记忆。
实现方式:短期记忆用于存储会话上下文,支持多轮对话;长期记忆则存储用户特征、业务数据等,通常通过向量数据库等技术实现快速存取。
3、工具(Tools)
定义:工具是Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。
实现方式:通过接入外部工具(如API、插件)扩展Agent的能力,如ChatPDF解析文档、Midjourney文生图等。
4、行动(Action)
定义:行动是Agent将规划与记忆转化为具体输出的过程,包括与外部环境的互动或工具调用。
实现方式:Agent根据规划与记忆执行具体行动,如智能客服回复、查询天气预报、AI机器人抓起物体等。
二、LLM Agent + RAG
什么是LLM Agent + RAG?
检索增强生成(RAG)架构为LLMAgent构建了动态知识接入通道。基础大型语言模型尽管通过海量预训练数据掌握了通用语言规律,但在面对垂直领域或高专业度需求时仍存在局限。
RAG机制的集成使LLMAgent具备实时检索能力,可主动调取结构化知识源(包括专业文献库、技术白皮书、商业数据系统等),显著提升其知识覆盖的精确性与场景适应性。
如何实现财报分析Agent?
通过融合大规模预训练语言模型(LLM)的语义理解能力、检索增强生成(RAG)技术的动态知识更新机制,结合自动化数据清洗引擎与多维分析算法,并设计模块化的任务编排策略,形成具备上市公司财报自动抓取、结构化解析、趋势预测及可视化报告输出的智能决策支持系统。
财报分析Agent,自动化完成数据收集、分析与报告生成,具体步骤包括需求分析、架构设计、Prompt设计、数据获取、RAG检索、LLM处理、报告生成等。
1、需求分析:
明确财报分析Agent的目标和功能需求,包括支持的财报类型、分析维度、报告格式等。
确定用户群体及其需求,例如财务人员、管理层、投资者等。
2、架构设计:
设计Agent的整体架构,包括Prompt设计模块、数据获取模块、RAG检索模块、LLM应用模块、报告生成模块等。
确定各模块之间的接口和交互方式,确保数据流和控制流的顺畅。
3、Prompt设计模块:
设计合理的Prompt模板,以引导LLM模型更好地理解用户问题和意图。
通过不断优化Prompt设计,提高Agent的回答质量和用户体验。
4、数据获取模块:
开发数据获取脚本或接口,负责自动从指定的网站(如证券交易所、公司官网、财经新闻网站等)抓取财报数据和其他相关信息。对收集到的数据进行清洗、格式化、去重等预处理工作,确保数据质量。
5、RAG检索模块:
整理历史财报分析报告、行业报告、会计准则等资料,构建财报知识库。使用RAG技术对知识库进行索引和优化,允许Agent在回答财报分析问题时,能够从其知识库中检索相关的文档和片段。
6、LLM处理模块:
将LLM模型与RAG技术集成,配置模型参数和检索策略。利用LLM模型的强大语言理解和生成能力,对经过RAG检索增强的问题进行理解和回答。
7、报告生成模块:
设计报告模板和格式化规则,确保生成的报告符合用户需求和规范。使用自然语言处理技术对报告初稿进行润色、校对和优化,提高报告的可读性和准确性。
集成图表、表格等可视化工具,增强报告的数据呈现效果。
未来已来,只是尚未普及。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!