当你学习指数分布的时候,经常会看到泊松分布的身影,网上的大部分教程讲的非常复杂,看完之后还是一头雾水。
本文本着通俗易懂的原则,使用生活中的例子,说明泊松分布和指数分布的关系。一下子学会了两种分布,有没有很有成就感?
泊松分布
在日常生活中,许多事件是有一定的频率的,比如下面的例子。
某公司平均每一小时接到三个用户电话。
某超市平均每五小时卖掉一个玩具。
一个网站平均每一分钟有二次访问。
你有没有发现上面事件的一些共同点?细心的你会发现,上面的事件,只能估计事件发生的总数,但是不能知道具体发生的时间。如果我问你,上面的第一个例子,平均每一小时接到一个用户电话,下一小时接到几个电话?我们并不能准确知道。
泊松分布便是描述某段时间内,事件发生的次数的概率。
泊松分布的概率密度函数公式如下,
P(N(t)=n)=(λt)ne−λtn!P(N(t)=n)=\frac{(\lambda t)^ne^{-\lambda t}}{n!}P(N(t)=n)=n!(λt)ne−λt
上面的式子中,PPP表示概率,NNN表示某种函数关系,ttt表示时间段,nnn表示事件发生的次数。一小时内接到一个用户电话的概率表示为P(N(1)=3)P(N(1)=3)P(N(1)=3)。λ\lambdaλ表示事件的频率。
为了理解的更深入,咱们再多举一些例子。
接下来两个小时,一个用户电话也没有的概率是0.025%,发生概率约等于零,计算方法如下所示,
P(N(2)=0)=(3×2)0e−3×20!≈0.0025P(N(2)=0)=\frac{(3\times2)^0e^{-3\times2}}{0!}\approx 0.0025P(N(2)=0)=0!(3×2)0e−3×2</