《DeepSeek RAG 增强检索知识库系统》Ollama DeepSeek 流式应答页面对接之三

前言
自从有了 AI 工具以后,所有以前头疼前端页面开发的后端程序员👨🏻‍💻,都漏出了友善😊微笑!

主要我们可以清楚地表达编写页面诉求,AI 工具就可以非常准确且迅速的完成代码的实现。这里我们可以选择的 AI 有很多,包括;OpenAI、DeepSeek、智谱AI等等。
功能实现
服务端接口

curl 'http://localhost:8090/api/v1/ollama/generate_stream?model=deepseek-r1:1.5b&message=1%2B1'

要告诉 AI 你的接口请求方式。我们这里是 GET 请求。

应答结果

[
  {
    "result": {
      "output": {
        "messageType": "ASSISTANT",
        "properties": {
          "id": "chatcmpl-B3HPw95SsqmhoWeJ8azGLxK1Vf4At",
          "role
### DeepSeek RAG Knowledge Base Implementation and Usage #### Understanding the Components of a RAG System with Text and Knowledge Embeddings A Retrieval-Augmented Generation (RAG) system combines retrieval-based methods with generative models to improve context-awareness in language processing tasks. In this setup, text embeddings provide semantic information about textual content while knowledge graph embeddings capture structured relationships between entities[^1]. For instance, when implementing a RAG model like those mentioned under projects such as AnythingLLM or MaxKB[^2], integrating both types of embeddings can significantly enhance performance by allowing the model not only to understand unstructured data but also leverage structured relational information from knowledge graphs. #### Implementing DeepSeek RAG Knowledge Base To implement a DeepSeek RAG knowledge base effectively: - **Data Preparation**: Start by preparing your dataset which includes documents that will be indexed for retrieval along with any associated metadata. - **Knowledge Graph Construction**: Construct a knowledge graph using domain-specific ontologies where nodes represent concepts/entities within the document corpus and edges denote relations among them. This step is crucial because it forms the backbone upon which more sophisticated operations are built later on. - **Embedding Models Selection**: Choose appropriate pre-trained embedding models capable of generating high-quality representations for texts and entities present inside the constructed KG. For example, BERT could serve well here due to its proven effectiveness across many NLP benchmarks[^4]. - **Index Building & Query Processing Pipeline Setup**: Utilize tools provided through frameworks similar to FlashRAG to facilitate efficient indexing over large-scale datasets alongside streamlined query handling mechanisms designed specifically around supporting complex search queries involving multiple criteria simultaneously[^3]. Here's an illustrative Python snippet demonstrating how one might set up parts of this pipeline programmatically: ```python from transformers import BertTokenizer, BertModel import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') def encode_text(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs)[0][:, 0, :] return outputs.detach().numpy() encoded_texts = [encode_text(doc['content']) for doc in documents] ``` This code initializes a BERT tokenizer and model before defining `encode_text`, a function used to convert raw strings into numerical vectors suitable for downstream machine learning applications including similarity searches against stored indices during inference time. --related questions-- 1. How does constructing a detailed knowledge graph contribute to improving RAG systems' ability to generate accurate responses? 2. What specific advantages do knowledge graph embeddings offer compared to traditional text-only approaches in enhancing LLM capabilities? 3. Can you elaborate on the role played by entity linking processes within these hybrid architectures combining text and knowledge elements? 4. Are there particular challenges encountered when scaling up implementations incorporating extensive external resources like comprehensive knowledge bases?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值