VectorNet-Encoding HD Maps and Agent Dynamics from Vectorized Representation 基于Transformer的轨迹预测模型

VectorNet是清华MARS Lab与Google Waymo合作提出的,用于自动驾驶的轨迹预测模型。该模型利用Transformer对地图静态特征和动态障碍物进行向量化表达,有效处理交互场景中的预测问题。相比传统的像素栅格化方法,VectorNet避免了CPU资源消耗和局限性的卷积操作,通过分级图神经网络直接建模实例间的关系,尤其擅长处理长距离交互信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VectorNet 是清华MARS Lab和Google Waymo联合在CVPR2020提出的一个基于Transformer的轨迹预测模型。在比较丰富和均衡的自动驾驶数据集上进行实际应用,效果还是相当优异的。
在这里插入图片描述
为了做好交互场景中障碍物车辆和行人的轨迹预测,需要考虑地图的静态特征和障碍物运动的动态特征。
VectorNet的设计思想是将地图的静态特征和障碍物运动的动态特征进行统一的向量化表达,然后利用Transformer进行Encoder和Decoder,进行障碍物的轨迹预测

VectorNet特征向量化表达

一、对于特征的表达
在这里插入图片描述
其他方法:像素栅格化的特征表示:

  • render trajectories of moving age
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一銤阳光

希望分享的内容对你有帮助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值