自动驾驶学习笔记(二十)——Planning算法

本文介绍了自动驾驶Planning模块中的关键算法,包括参考线平滑、双层状态机结构、EM Planner和Lattice Planner的工作原理。EM Planner基于最大期望算法进行路径规划,而Lattice Planner则采用采样方法生成无碰撞的局部轨迹。文章还提到了算法的调试方法,如实车运行和仿真运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#Apollo开发者#

学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往:

 《自动驾驶新人之旅》免费课程—> 传送门

Apollo 社区开发者圆桌会》免费报名—>传送门

文章目录

前言

参考线平滑

双层状态机

EM Planner

Lattice Planner

算法调试

总结


前言

        见《自动驾驶学习笔记(十五)——交通灯识别

        见《自动驾驶学习笔记(十六)——目标跟踪

        见《自动驾驶学习笔记(十七)——视觉感知

        见《自动驾驶学习笔记(十八)——Lidar感知

        见《自动驾驶学习笔记(十九)——Planning模块

参考线平滑

        高精地图通过Routing模块给过来的道路参考线,平滑度不满足决策规划算法的要求,参考线平滑算法类型有如下几种:

motion planning算法是指在机器人、自动驾驶汽车等无人驾驶系统中,为实现特定任务而规划机器人或汽车的运动路径的一类算法。这类算法可以利用环境感知数据、路径搜索算法等技术,将需求转换为可执行的运动序列,并生成相应的控制指令,实现机器人或汽车的自主运动。 常见的motion planning算法有以下几种: 1. 基于图搜索的算法,如Dijkstra算法、A*算法、RRT(Rapidly-exploring Random Tree)等。它们可以根据搜索图的构建方式和搜索策略的不同,实现不同的路径规划优化。 2. 路径优化算法,如样条曲线插值算法、Bezier曲线拟合算法、B样条曲线算法等。这些算法主要用于生成连续光滑的路径,提高机器人或汽车的运动稳定性。 3. 轨迹优化算法,如二次规划算法、非线性规划算法和最小二乘优化算法等。这些算法主要用于对路径生成的轨迹进行优化,以满足运动约束条件和机器人或汽车的动力学特性等考虑。 4. 碰撞检测算法,如凸壳算法、距离场算法和渐进式网格算法等。这些算法主要用于避免机器人或汽车在运动过程中与环境障碍物发生碰撞。 综上所述,motion planning算法是一类在无人驾驶系统中很重要的算法,不同的算法适用于不同的场景和实际应用需求,选用合适的算法能够在避免碰撞的前提下高效、安全地完成任务。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Cssust

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值