Spring Boot集成starrocks快速入门Demo

1.什么是starrocks?

StarRocks 是新一代极速全场景 MPP (Massively Parallel Processing) 数据库。StarRocks 的愿景是能够让用户的数据分析变得更加简单和敏捷。用户无需经过复杂的预处理,就可以用 StarRocks 来支持多种数据分析场景的极速分析。 StarRocks 架构简洁,采用了全面向量化引擎,并配备全新设计的 CBO (Cost Based Optimizer) 优化器,查询速度(尤其是多表关联查询)远超同类产品。 StarRocks 能很好地支持实时数据分析,并能实现对实时更新数据的高效查询。StarRocks 还支持现代化物化视图,进一步加速查询。 使用 StarRocks,用户可以灵活构建包括大宽表、星型模型、雪花模型在内的各类模型。 StarRocks 兼容 MySQL 协议,支持标准 SQL 语法,易于对接使用,全系统无外部依赖,高可用,易于运维管理。StarRocks 还兼容多种主流 BI 产品,包括 Tableau、Power BI、FineBI 和 Smartbi。 StarRocks 是 Linux 基金会项目,采用 Apache 2.0 许可证,可在 StarRocks GitHub 存储库中找到(请参阅 StarRocks 许可证)。StarRocks(i)链接或调用第三方软件库中的函数,其许可证可在 licenses-binary 文件夹中找到;和(ii)包含第三方软件代码,其许可证可在 licenses 文件夹中找到。

适用场景​

StarRocks 可以满足企业级用户的多种分析需求,包括 OLAP (Online Analytical Processing) 多维分析、定制报表、实时数据分析和 Ad-hoc 数据分析等。

OLAP 多维分析​

利用 StarRocks 的 MPP 框架和向量化执行引擎,用户可以灵活的选择雪花模型,星型模型,宽表模型或者预聚合模型。适用于灵活配置的多维分析报表,业务场景包括:

  • 用户行为分析
  • 用户画像、标签分析、圈人
  • 高维业务指标报表
  • 自助式报表平台
  • 业务问题探查分析
  • 跨主题业务分析
  • 财务报表
  • 系统监控分析
实时数据仓库​

StarRocks 设计和实现了主键表,能够实时更新数据并极速查询,可以秒级同步 TP (Transaction Processing) 数据库的变化,构建实时数仓,业务场景包括:

  • 电商大促数据分析
  • 物流行业的运单分析
  • 金融行业绩效分析、指标计算
  • 直播质量分析
  • 广告投放分析
  • 管理驾驶舱
  • 探针分析APM(Application Performance Management)
高并发查询​

StarRocks 通过良好的数据分布特性,灵活的索引以及物化视图等特性,可以解决面向用户侧的分析场景,业务场景包括:

  • 广告主报表分析
  • 零售行业渠道人员分析
  • SaaS 行业面向用户分析报表
  • Dashboard 多页面分析
统一分析​
  • 通过使用一套系统解决多维分析、高并发查询、预计算、实时分析查询等场景,降低系统复杂度和多技术栈开发与维护成本。
  • 使用 StarRocks 统一管理数据湖和数据仓库,将高并发和实时性要求很高的业务放在 StarRocks 中分析,也可以使用 External Catalog 和外部表进行数据湖上的分析。

存算一体架构

本地存储为实时查询提供了更低的查询延迟。 作为典型的大规模并行处理 (MPP) 数据库,StarRocks 支持存算一体架构。在这种架构中,BE 负责数据存储和计算。直接访问 BE 本地数据允许本地计算,避免了数据传输和复制,从而提供超快的查询和分析性能。该架构支持多副本数据存储,增强了集群处理高并发查询的能力并确保数据可靠性。非常适合追求最佳查询性能的场景。 

2.环境搭建

采用docker搭建最简单的测试环境

 

yaml

代码解读

复制代码

docker run -p 9030:9030 -p 8030:8030 -p 8040:8040 -itd --name quickstart starrocks/allin1-ubuntu

3.代码工程

实验目的

  1. 测试mysql创建 修改 插入删除数据
  2. 用streamload导入数据

pom.xml

 

xml

代码解读

复制代码

<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance

Spring Boot集成StarRocks,您可以按照以下步骤进行操作: 1. 添加StarRocks JDBC驱动依赖:在您的Spring Boot项目的pom.xml文件中,添加以下依赖: ```xml <dependency> <groupId>com.starrocks</groupId> <artifactId>jdbc</artifactId> <version>0.11.0</version> </dependency> ``` 2. 配置StarRocks连接信息:在application.properties(或application.yml)文件中,添加以下配置信息: ```properties spring.datasource.url=jdbc:starrocks://<host>:<port>/<database_name> spring.datasource.username=<username> spring.datasource.password=<password> ``` 请将`<host>`替换为StarRocks服务器的主机名,`<port>`替换为StarRocks服务器的端口号,`<database_name>`替换为您要连接的数据库名称,`<username>`和`<password>`替换为您的数据库凭据。 3. 创建StarRocks数据源:在您的Spring Boot项目中,创建一个StarRocks数据源配置类,如下所示: ```java import org.springframework.boot.context.properties.ConfigurationProperties; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.jdbc.datasource.DriverManagerDataSource; import javax.sql.DataSource; @Configuration public class StarRocksDataSourceConfig { @Bean @ConfigurationProperties(prefix = "spring.datasource") public DataSource starRocksDataSource() { return new DriverManagerDataSource(); } } ``` 4. 使用StarRocks数据源:在您的应用程序中,可以使用@Autowired注解将StarRocks数据源注入到需要连接数据库的类中。例如: ```java import org.springframework.beans.factory.annotation.Autowired; import org.springframework.jdbc.core.JdbcTemplate; import org.springframework.stereotype.Repository; @Repository public class MyRepository { private final JdbcTemplate jdbcTemplate; @Autowired public MyRepository(DataSource dataSource) { this.jdbcTemplate = new JdbcTemplate(dataSource); } // 在这里使用jdbcTemplate执行StarRocks查询 } ``` 通过上述步骤,您应该能够成功在Spring Boot集成StarRocks,并使用JdbcTemplate执行StarRocks查询。请确保您的项目中已经正确配置StarRocks服务器的连接信息,并且您已经正确引入StarRocks JDBC驱动依赖。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值