YOLO11改进:多尺度提取能力 | 大内核和倒瓶颈设计CMUNeXt,高效提取全局上下文信息

🚀🚀🚀提出了一种高效的全卷积轻量级医学图像分割网络CMUNeXt,该网络能够在真实场景场景中实现快速准确的辅助诊断。CMUNeXt利用大内核和倒瓶颈设计,将远距离空间和位置信息彻底混合,高效提取全局上下文信息

🚀🚀🚀如何使用:1)替换YOLO11 C3k2,实现二次创新,具备多尺度能力;

 ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、25年最新顶会改进思路、原创自研paper级创新等

⭐⭐⭐ 2025年计算机视觉顶会创新点适用于Yolov5、Yolov8、Yolov10等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

关于YOLOv11的具体细节尚未广泛公开,当前的信息主要集中在YOLOv8及其之前的版本。然而,根据YOLO系列的发展趋势以及YOLOv8在分割任务上的改进[^2],可以推测YOLOv11可能会继承并进一步发展这些特性。 ### YOLOv11可能的改进方向 #### 1. 更强的多尺度特征融合 为了提高小物体检测的效果,YOLOv11或许会采用更加复杂的多尺度特征融合机制。这种机制可以从多个层次提取特征图,并通过自底向上自顶向下的路径进行信息传递,从而增强对不同尺寸目标的理解识别能力[^4]。 #### 2. 高效的大核注意力机制 借鉴YOLOv8中的创新点,YOLOv11预计会在卷积神经网络(CNN)的设计上做出调整,特别是引入更大内核大小的关注力模块来捕捉全局上下文关系。这样的改动有助于改善模型对于复杂背景下微小目标的感知精度[^3]。 #### 3. 实例分割性能优化 除了传统的边界框预测外,YOLOv11很可能会继续强化其实例分割功能。这意味着不仅能够精确定位对象的位置,还能对其轮廓形状给出细致入微的描绘,进而达到更高的语义级别解析度。 ```python import torch.nn as nn class EnhancedAttentionModule(nn.Module): def __init__(self, channels): super(EnhancedAttentionModule, self).__init__() # 定义大核注意力层 self.attention_layer = nn.Conv2d(channels, channels, kernel_size=7, padding=3) def forward(self, x): attention_map = self.attention_layer(x) output = x * attention_map.sigmoid() return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值