点击下方卡片,关注“自动驾驶之心”公众号
世界模型Epona
地平线、清华、北大等团队ICCV'25中稿的自回归扩散世界模型工作,同时可以不依赖视频预测独立输出轨迹规划。

论文标题:Epona: Autoregressive Diffusion World Model for Autonomous Driving
论文链接:https://arxiv.org/abs/2506.24113
项目主页:https://kevin-thu.github.io/Epona/
主要贡献:
长时序生成。Epona可以实现长达2分钟的长时间生成,显著优于现有的世界模型;
实时轨迹规划。独立的多模态生成架构能够在视频预测不可用的情况下独立输出轨迹规划,从而显著降低了推理FLOPS。这实现了高质量甚至实时的轨迹规划,高达20Hz的帧率;
视觉细节的保存。Epona的自回归公式采用连续视觉标记器而不是离散标记器,从而保留了丰富的场景细节;
算法框架:

实验结果:


可视化:


欢迎大家加入知识星球,硬核资料在星球置顶:加入后可以获取自动驾驶视频课程、硬件及代码学习资料。业内最全的全栈学习路线图,独家业内招聘信息分享~最新技术第一时间掌握!
加入后如果不满意,三天内(72h)可全额退款!
A Survey on Vision-Language-Action Models
麦吉尔大学、小米等团队的VLA综述
论文标题:A Survey on Vision-Language-Action Models for Autonomous Driving
论文链接:https://arxiv.org/abs/2506.24044
项目主页:https://github.com/JohnsonJiang1996/Awesome-VLA4AD




StyleDrive
清华AIR、曼彻斯特大学和港大团队的端到端Bench工作
论文标题:StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving
论文链接:https://arxiv.org/abs/2506.23982
动机:

与当前已有bench的对比:


算法框架:

实验结果:

可视化:

最后欢迎大家加入知识星球,硬核资料在星球置顶:加入后可以获取自动驾驶视频课程、硬件及代码学习资料。业内最全的全栈学习路线图,独家业内招聘信息分享~
我们目标是未来3年内打造一个万人聚集的智能驾驶&具身智能社区,这里也非常欢迎优秀的同学加入我们(目前已经有华为天才少年、自驾领域研究前沿的多为大佬加入)。我们和多家业内公司搭建了学术 + 产品+ 招聘完整的桥梁和链路,同时内部在教研板块也基本形成了闭环(课程 + 硬件+问答)。社区里面既能看到最新的行业技术动态、技术分享,也有非常多的技术讨论、入门问答,以及必不可少的行业动态及求职分享。具身智能这么火,要不要考虑转行?自动驾驶技术的未来发展趋势如何?大模型如何预自动驾驶&具身智能结合?这些都是我们持续关注的
加入后如果不满意,三天内(72h)可全额退款!