- 博客(285)
- 收藏
- 关注
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现2
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:14:23
622
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现7
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:12:25
758
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现9
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:11:13
646
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现11
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:08:30
1037
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现1
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:08:15
819
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现3
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:08:09
929
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现4
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:08:06
742
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现5
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:08:03
890
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现6
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:08:01
662
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现8
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:07:54
777
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现10
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:07:49
1023
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现12
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:07:43
625
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现13
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:07:40
830
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现14
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:07:38
741
原创 Spring Data REST 远程代码执行漏洞(CVE-2017-8046)分析与复现15
2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引入新的工具显然是令人兴奋的,但是对于运维人员,也许是噩耗的开始。类比Struts 2框架,会发现绝大部分的安全漏洞都和ognl脱不了干系。尤其是远程命令执行漏洞,占据了多少甲方乙方工程师的夜晚/周末,这导致Struts 2越来越不受待见。因此,我们有理由相信Spring引入SpEL必然增加安全风险。事实上,过去多个Spring CVE都与其相关,如等。
2025-01-01 13:07:36
812
原创 LruCache在美团DSP系统中的应用演进5
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:58
986
原创 LruCache在美团DSP系统中的应用演进1
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:56
557
原创 LruCache在美团DSP系统中的应用演进2
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:53
632
原创 LruCache在美团DSP系统中的应用演进3
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:51
582
原创 LruCache在美团DSP系统中的应用演进4
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:49
830
原创 LruCache在美团DSP系统中的应用演进6
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:43
649
原创 LruCache在美团DSP系统中的应用演进7
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:41
712
原创 LruCache在美团DSP系统中的应用演进8
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:39
870
原创 LruCache在美团DSP系统中的应用演进9
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:36
709
原创 LruCache在美团DSP系统中的应用演进10
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:34
854
原创 LruCache在美团DSP系统中的应用演进11
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:32
802
原创 LruCache在美团DSP系统中的应用演进12
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:29
626
原创 LruCache在美团DSP系统中的应用演进13
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:26
660
原创 LruCache在美团DSP系统中的应用演进14
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:21
838
原创 LruCache在美团DSP系统中的应用演进15
LruCache采用的缓存算法为LRU(Least Recently Used),即最近最少使用算法。这一算法的核心思想是当缓存数据达到预设上限后,会优先淘汰近期最少使用的缓存对象。LruCache内部维护一个双向链表和一个映射表。链表按照使用顺序存储缓存数据,越早使用的数据越靠近链表尾部,越晚使用的数据越靠近链表头部;映射表通过Key-Value结构,提供高效的查找操作,通过键值可以判断某一数据是否缓存,如果缓存直接获取缓存数据所属的链表节点,进一步获取缓存数据。
2024-12-31 20:46:05
899
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现1
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-CSDN博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-CSDN博客。
2024-12-30 08:37:21
1017
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现2
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-CSDN博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-CSDN博客。
2024-12-30 08:37:18
887
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现3
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-CSDN博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-CSDN博客。
2024-12-30 08:37:15
709
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现4
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-CSDN博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-CSDN博客。
2024-12-30 08:37:12
1002
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现5
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-CSDN博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-CSDN博客。
2024-12-30 08:37:10
594
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现6
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-CSDN博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-CSDN博客。
2024-12-30 08:37:07
896
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现7
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-CSDN博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-CSDN博客。
2024-12-30 08:37:04
983
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现8
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-CSDN博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-CSDN博客。
2024-12-30 08:37:01
650
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现9
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-CSDN博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-CSDN博客。
2024-12-30 08:36:57
974
原创 iOS 覆盖率检测原理与增量代码测试覆盖率工具实现10
以上是我们在代码开发质量方面做的一些积累和探索。通过对覆盖率生成、解析逻辑的探究,我们揭开了覆盖率检测的神秘面纱。开发阶段的增量代码覆盖率检测,可以帮助开发者聚焦变动代码的逻辑缺陷,从而更好地避免线上问题。iOS 覆盖率检测原理与增量代码测试覆盖率工具实现 - 美团技术团队日常开发Guava提效工具库核心实用指南梳理_guava string转list-CSDN博客从ES的JVM配置起步思考JVM常见参数优化_es jvm配置-CSDN博客。
2024-12-30 08:36:55
609
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人