RC滤波算法

1.RC低通滤波

2.RC高通滤波

对于模拟PWM RC电路,类似的感触,如果滤波频率太低,输出的PWM不够高那么波形的幅度就明显。

 

 

R1+C1 才是RC充放电。

R3+C1 只能在放电的时候出现放电指数曲线

C2 上电开始充电,充电过程中C21导通,等到电容充电完成,能量积累完成,形成压差。这时候电容不导通了。

因为没有电容没有电子在流动了。按键释放,电容中积累的能量就会释放。

电流方向是逆时针,按照欧姆定律,会产生负压。

 

蓝色的线,开始电容直接导通,指数线就是电容充电的过程。充电完成电容没有电流了,电容不导通。

分析电路中研究电流和电流方向。

 

修改R2阻值就可以减小 负压峰值。

### 一阶RC滤波器算法实现代码示例 #### 背景与原理 一阶RC低通滤波器是一种经典的信号处理技术,用于平滑输入信号中的高频噪声。其核心思想基于简单的差分方程模型[^3]: \[ y(n) = \alpha \cdot x(n) + (1-\alpha) \cdot y(n-1) \] 其中: - \( y(n) \): 当前输出值; - \( x(n) \): 当前输入值; - \( y(n-1) \): 上一次的输出值; - \( \alpha \): 滤波系数,通常由时间常数决定。 以下是几种常见编程环境下的实现方式。 --- #### Python 实现 ```python def rc_low_pass_filter(input_signal, alpha=0.2): output_signal = [] previous_output = 0 for sample in input_signal: current_output = alpha * sample + (1 - alpha) * previous_output output_signal.append(current_output) previous_output = current_output return output_signal # 示例用法 input_data = [1, 2, 3, 4, 5] filtered_data = rc_low_pass_filter(input_data, alpha=0.3) print(filtered_data) ``` 上述代码实现了对输入数据的一阶RC低通滤波操作。 --- #### C++ 实现 ```cpp #include <vector> using namespace std; vector<double> rcLowPassFilter(const vector<double>& inputSignal, double alpha) { vector<double> outputSignal; double previousOutput = 0.0; for(auto sample : inputSignal){ double currentOutput = alpha * sample + (1 - alpha) * previousOutput; outputSignal.push_back(currentOutput); previousOutput = currentOutput; } return outputSignal; } // 示例用法 int main(){ vector<double> inputData = {1, 2, 3, 4, 5}; vector<double> filteredData = rcLowPassFilter(inputData, 0.3); for(double value : filteredData){ cout << value << endl; } } ``` 此C++版本同样遵循相同的差分方程逻辑。 --- #### PLC SCL 实现 在PLC环境中,可以通过结构化控制语言(SCL)编写类似的滤波函数。以下是一个典型的例子[^4]: ```scl FUNCTION RC_Low_Pass_Filter : REAL VAR_INPUT InputValue : REAL; (* 输入信号 *) Alpha : REAL; (* 滤波系数 *) END_VAR VAR PreviousOutput : REAL := 0.0; (* 上一次输出值 *) END_VAR (* 计算当前输出 *) RC_Low_Pass_Filter := Alpha * InputValue + (1 - Alpha) * PreviousOutput; (* 更新上一次输出 *) PreviousOutput := RC_Low_Pass_Filter; ``` 该函数可以直接嵌入到PLC项目中,适用于实时信号处理场景。 --- #### CODESYS FB 组件实现 如果使用CODESYS开发平台,可以创建一个功能块(Function Block),以便更方便地重用和调用[^5]: ```pascal FUNCTION_BLOCK FB_RC_Low_Pass_Filter VAR_INPUT In : REAL; (* 输入信号 *) K : REAL; (* 时间常数参数 *) END_VAR VAR_OUTPUT Out : REAL; (* 输出信号 *) END_VAR VAR PrevOut : REAL := 0.0; (* 前一次输出存储变量 *) END_VAR BEGIN Out := K * In + (1 - K) * PrevOut; PrevOut := Out; END_FUNCTION_BLOCK ``` 通过这种方式,在大型控制系统中能够更加模块化地管理滤波逻辑。 --- ### 性能考量 尽管一阶RC滤波器具有简单高效的特点,但也存在一定局限性。例如,它会引入相位延迟,并可能降低系统的响应速度。因此,在实际应用时需综合考虑具体需求以及硬件资源约束条件。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值