「优选算法刷题」:矩阵区域和

文章讲述了如何使用动态规划解决一个关于给定矩阵的子矩阵和问题,通过计算前缀和并处理边界条件,以求得当k变化时,矩阵中满足特定范围内的元素之和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目

给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和: 

  • i - k <= r <= i + k,
  • j - k <= c <= j + k 且
  • (r, c) 在矩阵内。

示例 1:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[12,21,16],[27,45,33],[24,39,28]]

示例 2:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
输出:[[45,45,45],[45,45,45],[45,45,45]]

二、思路解析

这道题的第一个考点就是得会读题,老实说,我读得也一知半解的,最终看了题解才做出来。

但大概意思就是,当 k = 1时,mat等于周围 1 个元素及其本身的总和,如下图:

图一

k 等于其它值时同理,扩大绿色部分即可。

这类题属于二维前缀和的,我们先用动态规划计算出一个辅助数组 dp,其中 dp[i][j] 表示矩阵 mat 中 (1,1) 到 (i,j) 区域内元素的和。

辅助数组 dp 中元素的推导公式如下:

图二

返回数组 answer 的推导公式如下:

图三

公式都是前缀和的基础知识,通过画图很快就能推出来,在此不做赘述。

同时,由于边界元素在计算时,有可能会超出 answer 数组的边界,所以我们要通过 max 和 min 来防止越界情况的发生,具体请下图:

图四

还有最后一步我们要弄明白的,就是下标的映射关系。我们通过动态规划中学到,在dp数组的维度上多加一行和一列,可以有效地减少我们对边界情况的计算量,也就如下图所示:

图五

而经过了这一步操作,图二图四都要在在图中加上绿色部分的代码。

具体实现请看下面代码👇

三、完整代码

class Solution {
    public int[][] matrixBlockSum(int[][] mat, int k) {
        int m = mat.length;
        int n = mat[0].length;
        int[][] dp = new int[m + 1][n + 1];

        for(int i = 1 ; i <= m ; i ++){
            for(int j = 1 ; j <= n ; j ++){
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + mat[i - 1][j - 1];
            }
        }

        int[][] answer = new int[m][n];
        for(int i = 0 ; i < m ; i++){
            for(int j = 0 ; j < n ; j ++){
                int x1 = Math.max(0 , i - k) + 1;
                int y1 = Math.max(0 , j - k) + 1;
                int x2 = Math.min(m - 1 , i + k) + 1;
                int y2 = Math.min(n - 1 , j + k) + 1;

                answer[i][j] = dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1];
            }
        }        
        return answer;
    }
}

以上就是本篇博客的全部内容啦,如有不足之处,还请各位指出,期待能和各位一起进步!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱敲代码的罗根

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值