如何递归对比两个文件夹当中npy文件的内容

本文介绍了一个Python程序,用于在两个文件夹中查找具有最长共同前缀的Numpy文件,并比较它们的形状、数值差异和余弦相似度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import os
import numpy as np
from scipy.spatial.distance import cosine
import csv

# 获取文件夹中所有文件的键值对映射
def get_file_mapping(folder_path):
    file_map = {}
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            file_map[file] = os.path.abspath(os.path.join(root, file))
    return file_map

# 找到两个文件名的最长匹配长度
def find_max_common_prefix_length(file1, file2):
    i = 0
    while i < len(file1) and i < len(file2) and file1[i] == file2[i]:
        i += 1
    return i

# 找到文件夹a和文件夹b中匹配的文件
def find_matching_files(folder_a, folder_b):
    a_map = get_file_mapping(folder_a)
    b_map = get_file_mapping(folder_b)

    matching_files = []

    for file_a, path_a in a_map.items():
        max_common_prefix_length = 0
        matching_file_b = ""

        for file_b, path_b in b_map.items():
            common_prefix_length = find_max_common_prefix_length(file_a, file_b)

            if common_prefix_length > max_common_prefix_length:
                max_common_prefix_length = common_prefix_length
                matching_file_b = file_b

        if matching_file_b:
            matching_files.append((path_a, b_map[matching_file_b]))
            # 删除已匹配的文件
            del b_map[matching_file_b]

    # 按最大匹配字符的字典序对匹配文件排序
    matching_files.sort(key=lambda x: os.path.basename(x[0]))

    return matching_files

# 比较两个npy文件的差异
def compare_npy_files(file_a, file_b):
    result_describe = ""

    array_a = np.load(file_a)
    array_b = np.load(file_b)

    if array_a.shape != array_b.shape:
        result_describe += f"shape {array_a.shape} {array_b.shape} a.shape==b.shape:{array_a.shape == array_b.shape}\n"
    else:
        result_describe += f"shape {array_a.shape} {array_b.shape}\n"

        max_difference = np.max(np.abs(array_a - array_b))
        min_difference = np.min(np.abs(array_a - array_b))
        average_difference = np.mean(np.abs(array_a - array_b))

        # 计算余弦相似度
        flat_array_a = array_a.ravel()
        flat_array_b = array_b.ravel()
        similarity = 1 - cosine(flat_array_a, flat_array_b)

        result_describe += f"max_value:{np.max(array_a)} {np.max(array_b)} {np.abs(np.max(array_a) - np.max(array_b))}\n"

        result_describe += f"min_value:{np.min(array_a)} {np.min(array_b)} {np.abs(np.min(array_a) - np.min(array_b))}\n"

        result_describe += f"avg_value:{np.average(array_a)} {np.average(array_b)} {np.abs(np.average(array_a) - np.average(array_b))}\n"

        result_describe += f"Max Value Difference:{max_difference}\n"

        result_describe += f"Min Value Difference:{min_difference}\n"

        result_describe += f"Average Error Difference:{average_difference}\n"

        result_describe += f"similarity: {similarity}\n"

    return result_describe

def main():
    folder_a = "a"
    folder_b = "b"
    matching_files = find_matching_files(folder_a, folder_b)

    for file_a, file_b in matching_files:
        print(f"匹配的文件:{os.path.basename(file_a)} 和 {os.path.basename(file_b)}")
        comparison_result = compare_npy_files(file_a, file_b)
        print(f"对比结果:\n{comparison_result}")
        print("")

        with open('comparison_results.csv', mode='a', newline='') as file:
            writer = csv.writer(file)
            comparison_result_lines = comparison_result.split('\n')
            writer.writerow([f"{os.path.basename(file_a)} and {os.path.basename(file_b)}"] + comparison_result_lines[1:-1])  # Skip the first and last lines


if __name__ == "__main__":
    main()
内容概要:本书《Deep Reinforcement Learning with Guaranteed Performance》探讨了基于李雅普诺夫方法的深度强化学习及其在非线性系统最优控制中的应用。书中提出了一种近似最优自适应控制方法,结合泰勒展开、神经网络、估计器设计及滑模控制思想,解决了不同场景下的跟踪控制问题。该方法不仅保证了性能指标的渐近收敛,还确保了跟踪误差的渐近收敛至零。此外,书中还涉及了执行器饱和、冗余解析等问题,并提出了新的冗余解析方法,验证了所提方法的有效性和优越性。 适合人群:研究生及以上学历的研究人员,特别是从事自适应/最优控制、机器人学和动态神经网络领域的学术界和工业界研究人员。 使用场景及目标:①研究非线性系统的最优控制问题,特别是在存在输入约束和系统动力学的情况下;②解决带有参数不确定性的线性和非线性系统的跟踪控制问题;③探索基于李雅普诺夫方法的深度强化学习在非线性系统控制中的应用;④设计和验证针对冗余机械臂的新型冗余解析方法。 其他说明:本书分为七章,每章内容相对独立,便于读者理解。书中不仅提供了理论分析,还通过实际应用(如欠驱动船舶、冗余机械臂)验证了所提方法的有效性。此外,作者鼓励读者通过仿真和实验进一步验证书中提出的理论和技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

C__Try

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值