盲超分辨:Unsupervised Real-world Image Super Resolution via Domain-distance Aware Training和FSSR记录

用csdn来记录重要的文章应该比typora好一些


CVPR2021 CITE125 悉尼大学
code

可以借鉴的点

fig1中比较了realLR和生成LR之间的FID;我的论文里面也可以 FID的链接
下面的是用的AIM数据集
在这里插入图片描述

abstract

烦死了,不知道为啥之前写的没了
解决转换之后的gap:
在这里插入图片描述
其中:domain-gap aware training的意思是训练SR的时候还用了real LR的数据;domain distance weighted就是判别器判别和real LR近的权重加大
此外还改进了DS网络+小波变换;

性能比较

我很高兴这一篇表示比cincyclgan的性能要好,希望是真的;
我非常担心我们的数据做不到,无法直接加那么重的卷积;真的很难。。。。。
在这里插入图片描述
在这里插入图片描述

框架

在这里插入图片描述

DSnet

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值