用csdn来记录重要的文章应该比typora好一些
文章目录
CVPR2021 CITE125 悉尼大学
code
可以借鉴的点
fig1中比较了realLR和生成LR之间的FID;【我的论文里面也可以】 FID的链接
下面的是用的AIM数据集
abstract
烦死了,不知道为啥之前写的没了
解决转换之后的gap:
其中:domain-gap aware training的意思是训练SR的时候还用了real LR的数据;domain distance weighted就是判别器判别和real LR近的权重加大
此外还改进了DS网络+小波变换;
性能比较
我很高兴这一篇表示比cincyclgan的性能要好,希望是真的;
我非常担心我们的数据做不到,无法直接加那么重的卷积;真的很难。。。。。