51nod 3058 小明爱集合

本文介绍了一种计算两个集合相似度的方法,并提供了一个高效的C++实现示例。通过使用set容器来统计不同元素的数量,进而计算出相同元素的数量,最终得出集合的相似度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近小明又喜欢上了集合,于是他提出了很多有关集合的问题,其中的一个问题是给你两个集合(集合内部没有重复的元素),让你求集合的相似度是多少,集合的相似度定义如下:

2个集合的相似度 = 相同元素的个数/(相同元素个数+不同元素个数)

聪明的你可以帮助小明解决这个问题吗?

输入格式

题目含有多组数据,第一行一个数T,表示数据的组数; 对于每组数据: 第一行包括两个数n,m,分别表示两个集合元素的个数(1<=n,m<100000); 第二行n个数表示前一集合的n个数,以空格隔开; 第三行m个数表示后一集合的m个数,以空格隔开; 其中对于两集合中任意数ai,有0<=ai<=max(2*n,2*m)。

输出格式

对于每组数据,输出两个集合的相似度,输出结果乘100后取整数部分。

输入样例

2
2 3
1 2 
2 3 4
3 3
5 3 4
3 4 1

输出样例

25
50

数据范围

对于10%的数据,1 <= T <= 2, n,m<= 4 对于50%的数据,1 <= T<= 4,n,m<= 1024 对于100%的数据,1 <= T<=10, n,m<= 100000 (0<=ai<=max(2*n,2*m))

样例解释

对于集合(1,2) (2,3,4)相同的元素为2,不同的元素为1,3,4,那么相似度为

1/4*100=25

对于集合(5,3,4) (3,4,1)相同的元素为3,4,不同的元素为1,5,那么相似度为

2/4*100=50

51nod标程:

利用 setset 统计两个集合去重合并后的元素数量 LL ,两个集合长度之和 - LL = 相同元素的数量。因此可以快速计算相似度。

#include <bits/stdc++.h>
using namespace std;

int main()
{
    //当我们遇到输入数据量很大的情况,可以添加这两句话提高速度
    ios::sync_with_stdio(false);
    cout.tie(NULL);
    int T, n, m, E;
    cin >> T;
    set<int> s;
    while (T--)
    {
        cin >> n >> m;
        s.clear();

        for (int i = 0; i < n + m; i++)
        {
            cin >> E;
            s.insert(E);
        }

        int ans = ((m + n) - s.size()) * 100 / s.size();
        cout << ans << endl;
    }
}

题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值