使用LLaMA-Factory微调ollama中的大模型(三)------window下通过WSL安装ubuntu,运行LLaMA-Factory

1.为什么要在linux系统安装训练大模型的环境

在训练大模型时,Linux系统确实是更常见的选择

1. 性能优化

Linux系统在资源管理、多线程处理和内存分配方面表现优异,能够更好地支持大规模计算任务。

Linux的文件系统(如Ext4/XFS)更适合处理大模型训练中常见的海量小文件,例如数据集和检查点。

LinuxGPU的支持更为优化,尤其是NVIDIACUDA工具链在Linux上表现更稳定、性能更高。

2. 开源生态与社区支持

Linux是开源系统,开发者可以深度定制内核、驱动和工具链,以满足特定硬件和软件栈的需求。

主流的AI框架(如TensorFlowPyTorch)和工具(如DockerKubernetes)在Linux上支持更全面,社区提供的解决方案也更丰富。

3. 稳定性和可靠性

Linux系统以其高稳定性和低故障率著称,适合长时间运行的大模型训练任务。

Windows相比,Linux在服务器环境中的表现更为成熟,能够避免因系统更新或蓝屏等问题导致的训练中断。

4. 成本与许可

Linux系统免费且无授权限制,而Windows Server的许可费用在高性能计算集群中会显著增加成本。

2.windows11系统下,通过WSL安装ubuntu

打开powershell

输入wsl --install -d Ubuntu-22.04

100%后按提示设置用户名和密码

设置完后直接自动登录了

备注:

安装完运行,报错WSL 2 kernel is missing or not properly installed.系统缺少 WSL2 所需的 Linux 内核更新包

安装 WSL2 Linux 内核更新包,点击下面链接下载安装器:

📥 https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi

安装后重启一次电脑(很关键)

然后重新打开 Ubuntu

3.安装python

打开ubuntu

依次输入命令

sudo apt update && sudo apt upgrade -y

sudo apt install -y git wget curl build-essential software-properties-common

sudo apt install -y python3.10 python3.10-venv python3.10-dev python3-pip

sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1

验证命令

python –version

pip –version

创建虚拟环境并激活

python -m venv llama-env

source llama-env/bin/activate

切换镜像源至国内

mkdir -p ~/.pip
vi ~/.pip/pip.conf

输入

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple

保存退出

4.安装 PyTorch(CUDA 支持)

pip install --upgrade pip

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

安装完成后测试

依次输入查看返回结果,没问题Ctrl+D退出

python

import torch

print(torch.cuda.is_available())

print(torch.cuda.get_device_name(0))

5.安装LLaMA-Factory 和依赖

git clone https://github.com/hiyouga/LLaMA-Factory.git

完成后进入文件夹

pip install -e ".[torch,metrics]"

pip install -U pip setuptools
pip install -r requirements.txt
pip install -r requirements-lora.txt

其中pip install -r requirements-lora.txt报错

手动安装 LoRA 训练所需的依赖

pip install peft accelerate bitsandbytes
pip install transformers datasets
pip install sentencepiece

6.启动

python src/webui.py --port 7860 --host 0.0.0.0

访问ip:7860即可(查看ip命令:ip addr show eth0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值