PEFT实战(三)——IA3参数高效微调

一、概念

        为了使微调更加高效,IA3(Infused Adapter by Inhibiting and Amplifying Inner Activations)使用可学习向量重新缩放内部激活值。这些可学习向量被注入到典型的基于 Transformer 的架构中的注意力和前馈模块中,是微调期间唯一的可训练参数,原始权重保持冻结。这么一来,可训练参数的数量大大减少了。IA3将模型的激活值(自注意力和编码器-解码器注意力块中的键和值,以及位置相关前馈网络的中间激活值)乘以三个可学习向量。这种参数高效微调(PEFT)方法引入的可训练参数数量比低秩自适应(LoRA)还要少,LoRA引入的是权重矩阵而不是向量。原始模型的参数保持冻结状态,只有这些向量会被更新。因此,对于新的下游任务进行微调时,它更快、更便宜且更高效。

        本文我们跟着HuggingFace教程来学习如何使用 IA3 训练一个序列到序列模型,以根据一些财经新闻生成情感分析结果。原则上,IA3 可以应用于神经网络中的任何权重矩阵子集,以减少可训练参数的数量。

二、原理

1、数据准备

        我们将使用financial_phrasebank数据集的sentences_allagree子集。这个子集的情感标签均有100%标注者的一致认同。首先,我们加载数据集,这个数据集的子集只包含一个训练集,因此我们使用train_test_split函数创建一个训练集和验证集的分割,并创建一个新的text_label列,以便更容易理解label值0、1和2的含义。

from datasets import load_dataset

ds = load_dataset("financial_phrasebank", "sentences_allagree")
ds = ds["train"].train_test_split(test_size=0.1)
ds["validation"] = ds["test"]
del ds["test"]

classes = ds["train"].features["label"].names
ds = ds.map(
    lambda x: {"text_label": [classes[label] for label in x["label"]]},
    batched=True,
    num_proc=1,
)

ds["train"][0]
{'sentence': 'It will be operated by Nokia , and supported by its Nokia NetAct network and service management system .',
 'label': 1,
 'text_label': 'neutral'}

        然后,加载分词器并创建一个预处理函数。该函数对输入进行分词,将序列填充和截断至max_length,并对标签应用相同的分词器,但使用对应于标签的更短的max_length,最后mask掉padding tokens。

from transformers import AutoTokenizer

text_column = "sentence"
label_column = "text_label"
max_length = 128

tokenizer = AutoTokenizer.from_pretrained("bigscience/mt0-large")

def preprocess_function(examples):
    inputs = examples[text_column]
    targets = examples[label_column]
    model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt")
    labels = tokenizer(targets, max_length=3, padding="max_length", truncation=True, return_tensors="pt")
    labels = labels["input_ids"]
    labels[labels == tokenizer.pad_token_id] = -100
    model_inputs["labels"] = labels
    return model_inputs

        使用映射函数将预处理函数应用于整个数据集。

processed_ds = ds.map(
    preprocess_function,
    batched=True,
    num_proc=1,
    remove_columns=ds["train"].column_names,
    load_from_cache_file=False,
    desc="Running tokenizer on dataset",
)

        创建一个训练和评估DataLoader,如果数据集样本在 CPU 上,则设置pin_memory=True以在训练期间加快数据传输到 GPU 的速度(如果有GPU)。

from torch.utils.data import DataLoader
from transformers import default_data_collator

train_ds = processed_ds["train"]
eval_ds = processed_ds["validation"]

batch_size = 8

train_dataloader = DataLoader(
    train_ds, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True
)
eval_dataloader = DataLoader(eval_ds, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)

2、模型构建

        这里,我们加载一个预训练模型作为 IA3 的基础模型——bigscience/mt0-large模型。

from transformers import AutoModelForSeq2SeqLM

model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/mt0-large")

        所有 PEFT 方法都需要一个配置,该配置包含并指定有关如何应用 PEFT 方法的所有参数。创建一个带有任务类型的IA3 配置,并将推理模式设置为False(可以在API 参考中找到配置的其他参数)。

from peft import IA3Config, get_peft_model

peft_config = IA3Config(task_type="SEQ_2_SEQ_LM")
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()

3、模型训练

        下面,我们设置一个优化器和学习率调度器。

import torch
from transformers import get_linear_schedule_with_warmup

lr = 8e-3
num_epochs = 3

optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
lr_scheduler = get_linear_schedule_with_warmup(
    optimizer=optimizer,
    num_warmup_steps=0,
    num_training_steps=(len(train_dataloader) * num_epochs),
)

        将模型移动到 GPU 上(如果有,建议使用GPU,CPU分分钟跑崩。。。),并创建一个训练循环,打印每个 epoch 的损失和困惑度。

from tqdm import tqdm

device = "cuda"
model = model.to(device)

for epoch in range(num_epochs):
    model.train()
    total_loss = 0
    for step, batch in enumerate(tqdm(train_dataloader)):
        batch = {k: v.to(device) for k, v in batch.items()}
        outputs = model(**batch)
        loss = outputs.loss
        total_loss += loss.detach().float()
        loss.backward()
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()

    model.eval()
    eval_loss = 0
    eval_preds = []
    for step, batch in enumerate(tqdm(eval_dataloader)):
        batch = {k: v.to(device) for k, v in batch.items()}
        with torch.no_grad():
            outputs = model(**batch)
        loss = outputs.loss
        eval_loss += loss.detach().float()
        eval_preds.extend(
            tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)
        )

    eval_epoch_loss = eval_loss / len(eval_dataloader)
    eval_ppl = torch.exp(eval_epoch_loss)
    train_epoch_loss = total_loss / len(train_dataloader)
    train_ppl = torch.exp(train_epoch_loss)
    print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")

4、应用

        加载模型,从数据集中加载一条财经新闻句子以生成其情感倾向。

from peft import AutoPeftModelForSeq2SeqLM

model = AutoPeftModelForSeq2SeqLM.from_pretrained("saved_model/mt0-large-ia3").to("cuda")
tokenizer = AutoTokenizer.from_pretrained("bigscience/mt0-large")

i = 15
inputs = tokenizer(ds["validation"][text_column][i], return_tensors="pt")
print(ds["validation"][text_column][i])

        调用生成方法以生成预测的情感标签。

with torch.no_grad():
    inputs = {k: v.to(device) for k, v in inputs.items()}
    outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10)
    print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
['positive']

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值