<论文>EasyEdit2:高效控制大模型行为

一、摘要

        本文介绍浙江大学发表于2025年4月的论文《EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models》。EasyEdit2是一个简单易用的大语言模型(LLM)行为控制框架,核心是让普通人也能轻松调整模型的输出风格和内容,无需修改模型底层参数

译文:

        在本文中,我们介绍了EasyEdit2,这是一个旨在实现即插即用式可调节性,以控制大语言模型(LLM)行为的框架。EasyEdit2支持广泛的测试时干预,包括安全性、情感倾向、个性、推理模式、事实性和语言特征。与前身不同,EasyEdit2采用了一种专门为无缝模型操控而设计的新架构。它包含诸如操控向量生成器和操控向量应用器等关键模块,这些模块能够自动生成并应用操控向量,从而在不修改模型参数的情况下影响模型行为。EasyEdit2的主要优势之一是其易用性——用户无需具备广泛的技术知识。仅需一个示例,他们就能有效地引导和调整模型的回复,使精确控制变得易于实现且高效。通过实证研究,我们报告了不同大语言模型上的模型操控性能,证明了这些技术的有效性。

二、核心创新点

        大语言模型(如 GPT、LLaMA)虽然强大,但可能生成不安全、不符合预期的内容(比如有害指令、错误事实),或者需要调整风格(如从 “中性语气” 改为 “积极语气”)。传统方法需要专业知识或修改模型参数,门槛高且麻烦。EasyEdit2 的目标则是像 “给模型吃药” 一样,在不改变模型核心的前提下,通过简单操作实时调整输出论文的框架围绕着两个核心模块展开:导向向量生成器和导向向量应用器。EasyEdit2基于这两个核心模块,可以提供如下干预场景:

  • 安全性:抵御越狱攻击、减少社会偏见、降低隐私泄露风险;
  • 情感:控制情感从消极转向积极,研究模型行为与情感表达之间的关系,并在心理健康场景中保持支持性的语气;
  • 个性:探索特定角色如何影响模型行为;
  • 推理模式:限制推理过程的长度,平衡参数知识和上下文知识,并强化特定学科的推理结构;
  • 事实性:基于导向的事实知识编辑,减轻模型幻觉,提升模型的自我验证能力;
  • 语言特性:控制回复语言、格式、句法结构等;

1、导向向量生成器模块

        导向向量生成器模块使用各种方法生成导向向量,生成的向量经过整理后可以直接应用。除了使用导向向量生成器模块之外,作者还维护了一个预训练导向向量库,这些向量针对各种场景进行了优化,包括情感控制、安全性以及特定任务的行为调节,可以让用户直接应用有效的导向。

2、导向向量应用器模块

        导向向量应用器模块通过同时应用多种方法,将导向向量集成到目标模型中,支持基于提示、基于激活和基于解码的导向。一旦应用了导向方法,该模块可以返回修改后的模型,以便立即进行低代码应用,或者根据配置设置或用户提供的评估数据集,生成输出文件。为了进一步提高灵活性,作者还引入了一个向量合并模块,能够组合多个导向向量,从而实现更精细且可定制的模型导向效果。

3、超参数模块

        为了支持导向向量生成器模块和导向向量应用器模块,作者实现了一个两层的超参数管理系统。顶层是一个统一的配置文件来管理常规的设置、向量生成、向量应用和评估参数;在底层,每种导向方法都有自己的超参数文件,通常分为导向向量生成配置和导向向量应用配置。

4、数据集模块

        数据集模块对各种数据格式进行标准话,以支持导向向量生成和评估。这种设计确保了无缝集成,并允许用户通过修改配置或者直接提供结构化数据来扩展数据集,从而提高灵活性和适应性。

5、评估器模块

        评估器模块通过处理来自评估数据集的结果文件,评估由导向模型生成的输出质量。评估方法分为基于规则、基于分类器和基于LLM的方法。用户指定要评估的导向概念,并使用预设模板对输入进行格式化,然后计算各种评估指标,包括概念、指令和流畅度得分,以全面衡量导向效果。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值