目录
- 视觉注意力机制的发展历程-Attention-Family
- ---------------------------------2015-------------------------------------
- ---------------------------------2016-------------------------------------
- ---------------------------------2017-------------------------------------
- ---------------------------------2018-------------------------------------
-
- GAN:Graph Attention Networks
- Graph-Based Global Reasoning Networks
- NLNet:Compact Generalized Non-local Network
- BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation(ECCV)
- EncNet:Context Encoding for Semantic Segmentation(CVPR)
- DFN:Learning a Discriminative Feature Network for Semantic Segmentation(CVPR)
- PSANet: Point-wise Spatial Attention Network for Scene Parsing(ECCV)
- SENet:Squeeze-and-Excitation Networks(CVPR)
- A^2-Nets: Double Attention Networks(NIPS)
- BAM: Bottleneck Attention Module(BMVC)
- Interaction-aware Spatio-temporal Pyramid Attention Networks for Action Classification(ECCV)
- csSE:Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks
- CBAM:Convolutional Block Attention Module
- NNnet:Non-local Neural Networks(CVPR)
- ---------------------------------2019-------------------------------------
-
- DANet:Dual Attention Network for Scene Segmentation(CVPR)
- OCNet: Object Context Network for Scene Parsing(ECCV)
- ACNet: Attention Based Network to Exploit Complementary Features for RGBD Semantic Segmentation(ICIP)
- EMANet:Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV)
- APCNet:Adaptive Pyramid Context Network for Semantic Segmentation(CVPR)
- LatentGNN: Learning Efficient Non-local Relations for Visual Recognition
- An Empirical Study of Spatial Attention Mechanisms in Deep Networks
- Feature Denoising for Improving Adversarial Robustness
- Interlaced Sparse Self-Attention for Semantic Segmentation
- Interleaved Group Convolutions for Deep Neural Networks
- Dynamic Graph Message Passing Networks
- A General Framework for Bilateral and Mean Shift Filtering
- CARAFE: Content-Aware ReAssembly of FEatures
- Expectation Maximization Attention Networks for Semantic Segmentation
- ---------------------------------2020-------------------------------------
视觉注意力机制的发展历程-Attention-Family
今天笔者发神经想记录一下视觉注意力机制的发展历程
----------------------------------------------------------attention主要的发展路径及目前的主流方法------------------------------------------------
自从Attention 机制继在 NLP 领域不错的效果之后,Attention 机制也在 CV 领域迅速拉开了大幕。以 Kaiming He 组的 Nonlocal为起点,迅速开启了Attention 时代。此后层出不穷的文章,犹如雨后春笋般开遍了整个CV领域。
下面以时间线为轴记录视觉注意力机制的发展论文以及代码:
---------------------------------2015-------------------------------------
Spatial Transformer Networks(NIPS)
论文下载:paper-Spatial Transformer Networks
论文解读:Spatial Transformer Networks
代码下载:github-Spatial Transformer Networks
---------------------------------2016-------------------------------------
Attention to Scale-Scale-aware Semantic Image Segmentation(CVPR)
论文下载:paper-Attention to Scale-Scale-aware Semantic Image Segmentation
论文解读:Attention to Scale-Scale-aware Semantic Image Segmentation
代码下载:————————————————————————————
---------------------------------2017-------------------------------------
Attention Is All You Need
论文下载:Attention Is All You Need
Semi-Supervised Classification with Graph Convolutional Networks(ICLR)
论文下载:Semi-Supervised Classification with Graph Convolutional Networks
Residual Attention Network for Image Classification
论文下载:paper-Residual Attention Network for Image Classification
论文解读:Residual Attention Network for Image Classification
代码下载:1-Residual Attention Network for Image Classification
代码下载:2-Residual Attention Network for Image Classification
---------------------------------2018-------------------------------------
GAN:Graph Attention Networks
论文下载:Graph Attention Networks
论文代码:Graph Attention Networks
Graph-Based Global Reasoning Networks
论文下载:paper-Graph-Based Global Reasoning Networks
论文解读:Graph-Based Global Reasoning Networks
NLNet:Compact Generalized Non-local Network
论文下载:Compact Generalized Non-local Network
BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation(ECCV)
论文下载:BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation
论文解读:BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation
代码下载:BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation