业务丨AB实验

AB测试是互联网行业中常用的数据驱动决策方法,其关键在于合理分配流量以保证实验组和对照组的用户特征一致性。实验目的包括判断优劣和计算收益。流量分配需权衡快速得出结论和用户体验。注意事项涉及避免新鲜劲数据陷阱和人群差异陷阱,确保实验结果的科学性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是A/B测试 - 腾讯技术工程
互联网为什么喜欢AB测试? | AB测试的流程与目的
AB实验在滴滴数据驱动中的应用
聊聊用户抽样 | AB测试的基石

浅谈AB测试里常见的辛普森悖论
最重要的一点是,要得到科学可信的AB测试试验结果,就必须合理的进行正确的流量分割,保证试验组和对照组里的用户特征是一致的,并且都具有代表性,可以代表总体用户特征。
在这里插入图片描述

AB Test 实验一般有 2 个目的:

  1. 判断哪个更好:例如,有 2 个 UI 设计,究竟是 A 更好一些,还是 B 更好一些,我们需要实验判定
  2. 计算收益:例如,最近新上线了一个直播功能,那么直播功能究竟给平台带了来多少额外的DAU,多少额外的使用时长,多少直播以外的视频观看时长等

流量分配

实验设计时有两个目标:

  1. 希望尽快得到实验结论,尽快决策
  2. 希望收益最大化,用户体验影响最小

因此经常需要在流量分配时有所

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值