1 慢查询监控与分析工具
- 启用慢查询日志:设置long_query_time并分析
- 使用Performance Schema:监控SQL执行细节
- 第三方工具:如Percona Toolkit、pt-query-digest等
- 可视化监控:使用Prometheus+Grafana等方案
2 慢查询解决方案考虑方向
当面对MySQL慢查询问题时,可以从以下几个方面进行系统性的分析和优化:
2.1 查询优化
复杂查询
- 对于非常复杂的查询,尤其是包含多个子查询和联合操作的查询,考虑将其拆分为多个简单的查询,或者使用临时表。这样可以减少 MySQL 的查询优化器的压力,并可能提高查询效率。
嵌套查询
- 嵌套子查询可以考虑改成关联查询
事务
- 避免使用长事务
select
- 避免select *
- select 列 时使用覆盖索引的方式
count
- 使用count * 而不是count 具体的列
join
- 在处理多表连接时,选择合适的连接方式可以显著影响查询性能。尽量使用 INNER JOIN 而不是 OUTER JOIN,除非必须返回没有匹配数据的记录。
- 确定ON或者USING子句中是否有索引。
limit 分页
- 当偏移量大时,使用where 索引列名>偏移量
group by、order by
- 使用索引列
- 如果不需要ORDER BY,进行GROUP BY时加ORDER BY NULL,MySQL不会再进行文件排序。
- 关联查询时,确保GROUP BY和ORDER BY只有一个表中的列,这样MySQL才有可能使用索引
- 对于联合索引,也需要符合最左匹配原则
union
- 使用union all 而不是union
where
- 基本时索引失效的一些场景Mysql索引失效的场景 中除了10 group by外
2.2 索引优化
创建索引注意些什么
MySQL进阶之(六)索引的使用与设计原则 中的6.5
2.3 数据库配置优化
- 缓冲池大小:调整innodb_buffer_pool_size
- 排序缓冲区:优化sort_buffer_size等参数
- 连接数配置:适当调整max_connections和thread_cache_size
- 日志配置:平衡慢查询日志开销与监控需求
2.4 架构层面优化
- 读写分离:将读请求分流到从库
- 分库分表:对大数据量表进行水平或垂直拆分
- 缓存层引入:使用Redis等缓存热点数据
- 异步处理:将非实时需求操作异步化
2.5 硬件与系统层面
- 存储优化:使用SSD替代HDD
- 内存扩容:增加服务器内存减少磁盘I/O
- CPU资源:确保有足够的CPU处理能力
- 系统参数:调整文件描述符限制、网络参数等
2.6 应用层优化
- 减少交互次数:批量操作替代单条操作
- 合理使用事务:避免长事务和过大事务
- 连接池管理:合理配置和使用数据库连接池
- ORM框架优化:检查生成的SQL语句效率。
一般不考虑用的基本都是第三方包或库。
3 具体排查过程
2 慢查询解决方案考虑方向 中的方案会在以下的排查过程中体现
1 判断是不是网络、接口问题。接口问题应该从 该文档2.6应用层优化 考虑
2 若不是网络或接口问题,查看服务器性能cpu、内存、硬盘。若mysql的cpu很高则表示读写频率高,若网站的访问量又不高,则可能是(1)mysql参数问题;(2)linux系统参数;(3)mysql的sql语句查询慢的问题。
2.1 mysql参数的问题,采取措施:(i) 调整缓存池大小, mysql8.0可以不用考虑,8.0已经去掉了查询缓存 (ii)调整连接数大小。
2.2 linux系统参数,采取措施:(i) 调整文件句柄数 (ii) 调整tcp连接TIMEWAIT状态相关参数;MySQL–基础知识点–55–MySQL优化中系统内核优化部分
2.3 mysql的sql语句查询慢问题,采取措施:
(i) 使用show processlist;
查询当前活动连接,可以显现出谁在执行sql,以及正在执行的sql执行了多长时间。
(ii) 使用慢查询日志
查看慢查询sql [@1 查询慢查询日志三个相关参数:show variables like ‘query’; @2 三个慢查询日志参数:slow_query_time 慢查询时间阈值,超过这个时间的查询的查询语句会被记录到慢查询日志里;slow_query_log 是否打开慢查询,值为off/on;slow_query_log_file 慢查询日志的位置;@3 启用慢查询 set global slow_query_log=ON @4 摸拟一条慢查询 select * from edu_user where id=1 and sleep(60);] @4 mysqldumpslow 分析慢查询日志,访问最慢的sql、查询频次最高的sql等。
(iii) 使用profiles
可以查看是具体哪一步耗时,一条sql 语句执行有多个步骤,见MySQL–基础知识点–53–profile分析SQL语句性能消耗中的starting–cleaning up,主要关注其中optimizing、executing、Sending data这三个阶段。
- optimizing 慢:检查执行计划、更新统计信息、优化索引
- executing 慢:优化SQL写法、添加缺失索引、避免全表扫描
- Sending data 慢:限制返回字段、分页优化、网络调优
(iv) explain
分析慢查询sql执行任务,通过查看 EXPLAIN 的输出,你可以了解查询的性能瓶颈,并据此进行优化。并且可以根据trace
【MYSQL 索引分析工具——trace】的结果进行更详细的分析。例如,如果你发现查询没有使用索引,或者查询了过多的行,那么你可能需要重新考虑索引策略,或者修改查询以使其更高效。
(v)根据(iv)的分析结果进行优化:[1]索引优化:添加合适的索引[2]查询语句优化
3 若以上都没问题,考虑数据量大的问题。可以从架构层考虑:(i) 读写分离;(ii) 应用级别的缓存;(iii)分库分表分区。
补充:
mysqldumpslow是MySQL提供的一个命令行工具,主要用于分析MySQL的慢查询日志(slow query log)。以下是关于mysqldumpslow的详细介绍和使用方法:
一、基本用途
分析慢查询日志:从慢查询日志中提取信息,并以易读的方式展示最耗时的查询,以便进一步分析和优化。
提高性能:帮助开发人员和数据库管理员识别和优化数据库中的慢查询,提高系统的性能和响应时间。
二、使用方法
查看慢查询日志
在命令行中输入mysqldumpslow /path/to/slowquery.log,以查看整个慢查询日志文件中的所有慢查询。
排序选项
-s参数用于指定排序方式,可以按查询时间、锁等待时间、返回行数等进行排序。
-s t:按时间顺序(从最新到最旧)排序。
-s at:按查询时间长短排序,显示查询时间最长的慢查询。
-s al:按锁等待时间长短排序。
-s ar:按返回行数排序。
指定显示的记录数
-t NUM参数用于指定显示多少条慢查询记录。默认情况下,mysqldumpslow将显示前10条慢查询记录。
过滤特定的查询
使用-g PATTERN参数进行正则匹配,筛选出与特定模式相关的慢查询。
其他选项
-v:输出debug信息。
-d:指定输出排序规则,包括多种排序方式的组合。
-r:输出结果反序排序,默认是降序(desc)排序。
-a:不将数字抽象为N、字符抽象为S。
-n NUM:将超过N个数字的数值字符抽象显示。
-l:总时间包含锁定时间。
三、注意事项
在使用mysqldumpslow之前,需要确保MySQL的慢查询日志功能已经开启,并且慢查询日志文件存在且可读取。
mysqldumpslow工具通常与MySQL数据库服务器一起安装,无需单独安装。
虽然mysqldumpslow提供了基本的慢查询分析功能,但对于更复杂的性能问题,可能需要结合其他工具和方法进行综合分析和优化。
通过合理地使用mysqldumpslow工具,可以有效地识别和优化MySQL数据库中的慢查询,提高系统的整体性能和响应速度。
EXPLAIN 是 MySQL 中的一个关键字,用于分析 SQL 查询的执行计划。当你对查询性能有疑问,或者想知道 MySQL 是如何执行某个查询时,EXPLAIN 可以提供非常有价值的信息。
使用 EXPLAIN 的基本语法是:EXPLAIN SELECT ... FROM ... WHERE ...; eg: EXPLAIN SELECT * FROM users WHERE username = 'john_doe';
当你执行一个带有 EXPLAIN 的查询时,MySQL 不会实际执行这个查询,而是返回一个关于查询执行划的表格。这个表格包含了多个列,每个列都提供了关于查询执行的不同方面的信息。
想知道 MySQL 是如何执行某个查询时,EXPLAIN 可以提供非常有价值的信息。
以下是一些常见的 EXPLAIN 输出列及其描述:
想知道 MySQL 是如何执行某个查询时,EXPLAIN 可以提供非常有价值的信息。
- id:查询标识符,每个 SELECT(和某些子查询)都会有一个唯一的 ID。
- select_type:查询的类型(例如 SIMPLE、SUBQUERY、UNION 等)。
- table:查询涉及的表。
- type:连接类型(例如 ALL、index、range、ref、eq_ref、const 等),它告诉你 MySQL 如何连接表。ref 和 const 通常是好的,而 ALL 则可能表示性能问题。
- possible_keys:查询可能使用的索引。
- key:实际使用的索引(如果 MySQL 决定使用索引的话)。
- key_len:使用的索引的长度。
- ref:哪些列或常量被用作索引查找的引用。
- rows:MySQL 估计需要检查的行数(注意,这只是一个估计值)。
- Extra:包含 MySQL 解决查询的附加信息(例如使用了哪些文件排序、使用了临时表等)。
想知道 MySQL 是如何执行某个查询时,EXPLAIN 可以提供非常有价值的信息。
通过查看 EXPLAIN 的输出,你可以了解查询的性能瓶颈,并据此进行优化。例如,如果你发现查询没有使用索引,或者查询了过多的行,那么你可能需要重新考虑索引策略,或者修改查询以使其更高效。