yolov5模型结构与构建原理

一.yolov5模型结构与构建原理

修改模型结构,全部在models文件夹下面

models/common.py   (加入新增网络细节)

models/yolo.py          (设定网络结构传参细节)

models/##.yaml         (修改模型结构配置文件)


上一篇博客用的自己标注的火影的数据集,修改的是data

data/##.yaml,

然后把数据集datasets放进项目里面

没有修改模型本身

 1.用tensorboard可视化来理解模型结构:

进入到group图

综合上面的3个图,我们可以这样总结:
(1)每经过一个卷积conv,特征图/2

(2)每一层都有层数标号,从0开始,这个标号非常重要,决定了特征融合是哪一层和哪一层融合(相同大小的特征图才能彼此融合)

(3)最后是融合之后的17,20,23层成为3种size的特征头

2.理解深层逻辑

(1)在train.py里面找到#model

我们只关注最后一行,给model传的参列表

cfg:对应yolov5s.yaml文件

ch:通道数为3

nc:原始类别数,修改yaml会对其更新

(2)进到Model里面看看实现

会发现这个Model其实等于DetectionModel的返回值


 yolo.py:

(3)进入DetectionModel看看具体实现

会发现竟然跳到了yolo.py里面来 惊!

还记得文章最前面的这个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值