HDFS简介
HDFS是一个文件系统(Hadoop Document File System),通过目录树来定位文件。其次,它是分布式的。
HDFS适用于:一次写入,多次读出的场景。
HDFS通过多种方式,实现了高容错性、可靠性、适合处理大数据
HDFS缺点:
1.不适合低延时的数据访问。
2.无法高效的对大量小文件进行存储
(占用过多NameNode的内存用于存储文件目录和块信息)
3.不支持并发写入,文件随机修改。(比较适用Append,追加数据)
HDFS架构:
NameNode(nn):作为主管。
- 管理HDFS的名称空间
- 配置副本策略
- 管理数据块的映射
- 处理客户端请求
DataNode(dn):作为小弟
- 储存实际的数据块
- 进行数据块的读写操作
Client:客户端
- 切分文件,文件上传到HDFS时,Client将其切分成Block,再进行上传。
- 与NN交互,获取文件的位置信息。
- 与DN交互,读写数据
- 管理HDFS
- 访问HDFS,对其CRUD
SecondaryNameNode(2nn):秘书+备用 但是2nn并不是时时刻刻保持着备用状态,当nn宕机时,2nn不是立即替换NameNode进行服务的。
- 辅助nn,分担工作了,定期合并Fsimage和Edits
- 辅助恢复nn(当nn宕机)
HDFS文件块大小。在Hadoop2.x/3.x中默认是128M。那么为什么?
因为在集群中,寻址的时间大概是10ms,而当寻址时间是传输时间的1%时,状态最佳。
此时传输数据的时间大约为1s。而目前硬盘的刷新速度,若是固态,我们可以把block设置为256M,若是一般硬盘,则为128M。(1s刷一个block,即设置block的大小取决于硬盘的传输速度)。
如果HDFS设置的block大小太小,会提高寻址时间。若太大,处理该块数据会太慢。
HDFS的Shell操作:
hadoop fs 具体命令 hdfs dfs 具体命令
[root@Hadoop-1 hadoop-3.1.3]$ bin/hadoop fs
[-appendToFile <localsrc> ... <dst>] //追加文件信息
[-cat [-ignoreCrc] <src> ...] //忽略crc认证查看文件信息
[-chgrp [-R] GROUP PATH...] //换group
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...] 同Linux命令
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-copyFromLocal [-f] [-p] <localsrc> ... <dst>] //上传文件(从本地)
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] //下载
[-count [-q] <path> ...]
[-cp [-f] [-p] <src> ... <dst>]
[-df [-h] [<path> ...]]
[-du [-s] [-h] <path> ...] //统计文件夹大小
[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] //下载
[-getmerge [-nl] <src> <localdst>]
[-help [cmd ...]]
[-ls [-d] [-h] [-R] [<path> ...]]
[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ... <dst>] //移动(删除源文件)上传
[-moveToLocal <src> <localdst>] //移动下载
[-mv <src> ... <dst>] //移动
[-put [-f] [-p] <localsrc> ... <dst>] //上传
[-rm [-f] [-r|-R] [-skipTrash] <src> ...]
[-rmdir [--ignore-fail-on-non-empty] <dir> ...]
<acl_spec> <path>]]
[-setrep [-R] [-w] <rep> <path> ...] //设置副本数量
[-stat [format] <path> ...] //查看状态
[-tail [-f] <file>] //查看文件的末尾1kb数据
HDFS的API操作。
在Windows中配置Hadoop的环境变量。HADOOP_HOME以及Path
创建一个Maven工程(若不会使用Maven就直接用默认设置即可)
在pom.xml中导入相应的依赖坐标和日志添加。(类似需要的jar包,需联网下载)
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.30</version>
</dependency>
</dependencies>
在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
之后便可以使用HDFS的API了。新建包,创建我们的Client类。
实现客户端代码常用套路 1.获取一个客户端对象 2.执行相关的操作指令 3.关闭 * HDFS 和Zookeeper都类似。
下面展示常用的一些api
package com.zc.hdfs;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.yarn.webapp.hamlet2.Hamlet;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.util.Arrays;
/**
* @program:HDFS_1
* @descripton:客户端代码常用套路 1.获取一个客户端对象 2.执行相关的操作指令 3.关闭
* HDFS 和Zookeeper都类似
* @author:ZhengCheng
* @create:2021/10/27-16:30
*
**/
public class HdfsClient {
private FileSystem fs;
@Before
public void init() throws IOException, InterruptedException, URISyntaxException {
//连接的集群nn地址
URI uri = new URI("hdfs://Hadoop-1:8020");//8020是内部通讯端口,9870是用户访问端口
//创建一个配置文件
Configuration configuration = new Configuration();
// configuration.set("dfs.replication","2");//最高优先级
String user ="root";
//获取客户端对象
fs = FileSystem.get(uri, configuration,user);
}
@After
public void close() throws IOException {
fs.close();
}
@Test
public void testmkdir() throws URISyntaxException, IOException, InterruptedException {
fs.mkdirs(new Path("/xiyou/huaguoshan"));
}
/*
参数优先级排序:(1)客户端代码中设置的值 >
(2)ClassPath下的用户自定义配置文件 >
(3)然后是服务器的自定义配置(xxx-site.xml)>
(4)服务器的默认配置(xxx-default.xml)
*/
@Test//上传数据
public void testPut() throws IOException {
//参数解读:是否删除原数据,Override(覆盖?),原路径,目标路径
fs.copyFromLocalFile(false ,false,new Path("E:\\HDFS\\sunwuk.txt"),new Path("/xiyou/sunwukong.txt"));
}
@Test//下载数据
public void testGet() throws IOException {
// boolean useRawLocalFileSystem 是否开启文件校验
//传递下来的crc 用于校验
fs.copyToLocalFile(false,new Path("/xiyou/huaguoshan1/sunwuk.txt"),new Path("E:\\HDFS\\"));
}
@Test
public void testRm() throws IOException {
//后面的这个boolean是判断其是否需要递归删除
//如果要删除的路径是一个文件,参数recursive 是true还是false都行
//如果要删除的路径是一个目录,参数recursive 开启true就是递归删除,如果填false,而下级目录还有文件,就会报错。
fs.delete(new Path("/xiyou/huaguoshan"),true);
}
@Test//rename默认删除源文件,所以可以用于更名 也可以用于move
public void testRename() throws IOException {
fs.rename(new Path("/xiyou/sunwukong.txt"),new Path("/xiyou/swk.txt"));
}
//查看文件详情信息
@Test
public void testListFiles() throws IOException {
RemoteIterator<LocatedFileStatus> iterator = fs.listFiles(new Path("/"), true);
while (iterator.hasNext()){
LocatedFileStatus file = iterator.next();
System.out.println("========" + file.getPath() + "=========");
System.out.println(file.getPermission());
System.out.println(file.getOwner());
System.out.println(file.getGroup());
System.out.println(file.getLen());
System.out.println(file.getModificationTime());
System.out.println(file.getReplication());
System.out.println(file.getBlockSize());
System.out.println(file.getPath().getName());
// 获取块信息
BlockLocation[] blockLocations = file.getBlockLocations();
System.out.println(Arrays.toString(blockLocations));
}
}
@Test
public void testFileStatus() throws IOException {
FileStatus[] fileStatuse = fs.listStatus(new Path("/"));
for (FileStatus file : fileStatuse) {
if (file.isFile()){
System.out.println("File:"+file.getPath().getName());
}else {
System.out.println("Document:"+file.getPath().getName());
}
}
}
}