Leetcode【贪心】| 45. 跳跃游戏 II

本文介绍了LeetCode中的跳跃游戏II问题,给出了反向动态规划和正向贪心算法两种解题方法。动态规划从终点开始反向求解,通过递归或非递归方式找出最少跳跃次数。贪心算法则维护每一步能到达的最远位置,以最少步数达到终点。以数组[2,3,1,1,4]为例,展示了贪心算法如何在两步内到达终点。" 78527344,1325240,解决SELinux权限问题导致的NE报错,"['Linux', '安全', 'Android开发', 'SELinux政策', '权限管理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
你的目标是使用最少的跳跃次数到达数组的最后一个位置。
示例:
 输入: [2,3,1,1,4]
 输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
说明: 假设你总是可以到达数组的最后一个位置。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jump-game-ii

解题

反着找(动态规划)

 从终点开始,先求出能一步跳到终点n-1的位置i,此时i+nums[i]>=n-1,然后再求出能到达 i 的位置j(j+nums[j] >= i)此时将i当成终点就可用递归实现,这样一步步往前推,直到推到第一个位置,每推一步步数+1。将所有情况列出,求出步数最小的一个res。

图解举例:以nums = {2,3,1,1,4}为例

  1. 倒数第一步:从终点位置4开始,从位置0(2),位置1(3),位置2(1),位置3(1)依次遍历,能到达位置4的有位置1(3:1+3>=4)和位置3(1:3+1>=4)。
    在这里插入图片描述
  2. 倒数第二步:将位置1/位置3作为终点再次往前推一步。
    ① 位置1为终点:从位置0开始遍历,能到位置1的有位置0(0+2 >= 1)。推到了第一个位置,循环结束,总共只需两步,res=2。
    在这里插入图片描述
    ② 位置3为终点:从位置0开始遍历,能到达位置3的有位置1(1+3>= 3)、位置2(2+1>=3),这里还没有到第一个位置,所以需要再往前推一步。
    在这里插入图片描述
    倒数第三步:能到达位置1的有位置0(0+2>=1),能到达位置2的有位置0(0+2>=2),此时到达第一个位置,总共需要三部,res=3。
    在这里插入图片描述
    在这里插入图片描述

 通过枚举出所有情况,可得resmin = 2。

递归实现如下:枚举所有情况求步数最小的,这样会超时

//left始终为0,right为每次的终点i,第一个终点是
 		for(int i = left; i < right; i++){
            if(farthest[i]>=right){//farthest[i] = i+nums[i]
                res = Math.min(res,jumpres(nums,0,i,farthest)+1);
            }
        }

优化:
 每次只需要求出从终点开始能一步跳到终点的最远的位置i,即从left开始遍历,求出的第一个farthest[i]>=right的i即可。
 从上述图解示例就可以看出,每次求能跳的最远的位置(即只求红色箭头,浅绿色箭头的都忽略不用枚举),即离初始位置最近的位置,其实就是步数最少的选择,就不用把所有情况的res都求出来选出min,就不会超时了。
在这里插入图片描述
 优化代码如下:

		for(int i = left; i < right; i++){
            if(farthest[i]>=right){//farthest[i] = i+nums[i]
                res = jumpres(nums,0,i,farthest)+1;
                break;
            }
        }

递归实现

class Solution {
    int res = Integer.MAX_VALUE;
    public int jump(int[] nums) {
        int[] farthest = new int[nums.length];//每个点最远能到达的位置
        for(int i = 0; i < nums.length; i++){
            farthest[i] = i+nums[i];
        }
        return  jumpres(nums,0,nums.length-1,farthest);

    }
    public int jumpres(int[] nums, int left, int right, int[] farthest){
        int n = right-left+1;

        if(n < 2) return 0;
        //因为假设你总是可以到达数组的最后一个位置,所以当只有两个元素的时候不用判断直接返回1步到达。
        if(n == 2 || n <= nums[left]+left) return 1;
        for(int i = left; i < right; i++){
            if(farthest[i]>=right){
                res = jumpres(nums,0,i,farthest)+1;
                break;
            }
        }
        return res;
    }
}

在这里插入图片描述

非递归实现

参考这里

class Solution {   
	public int jump(int[] nums) {
    	int position = nums.length - 1; //要找的位置
    	int steps = 0;
    	while (position != 0) { //是否到了第 0 个位置
        	for (int i = 0; i < position; i++) {
            	if (nums[i] >= position - i) {
                	position = i; //更新要找的位置
                	steps++;
                	break;
            	}
        	}
    	}
    	return steps;
	}
}

正着找(贪心算法)

思路

 与Leetcode【贪心】| 55. 跳跃游戏 不同的是,55题只需维护从初始位置开始每次跳能到达的最远位置farthest,看总最远位置是否能超过终点即可。而这一题假设肯定能跳到终点,但要求出步数,所以要维护从初始位置开始每一步能到达的最远位置,看总共需要几步。

 贪心选择:维护走每一步能到达的最远位置stepfar。

  1. 当这一步能到达的最远位置已经超过终点时,就是能跳跃到终点的最少步数。
  2. 若这一步能到达的最远位置没到终点的时候,要从这一步能到达的位置中选出一个位置进行下一步跳跃,让下一步能到达的位置最远,这时就需要和55题的跳跃游戏一样维护一个在当前位置之前能最远跳跃到的位置farthest = Math.max(farthest, i+nums[i]),当遍历到每一步的最远位置时更新下一步的最远位置使用。

图解举例:以nums = {2,3,1,1,4}为例

  1. 第一步:从第一个位置走第一步,最远能到达 0+2 位置,所以2,3这三个位置都能到达。但并没有到达终点位置4,所以要进行第二步。
    在这里插入图片描述

  2. 第二步:在第一步能到达的区域(位置1,2)内,选择第二步能到达的最远的位置,很显然是位置1(1+3)> 位置2(2+1),第一个位置能到达的位置更远,为4>=终点4,表示到达终点了,最终结果,在此数组中最少两步就能到达终点。
    在这里插入图片描述

Java实现

class Solution {   
    public int jump(int[] nums) {
        int res = 0;//走的步数
        int farthest = 0;//维护当前最远能到达的位置
        int stepfar = 0;//维护每一步能到达的最远位置
        int n = nums.length;
        if(n < 2) return 0;
        if(n == 2) return 1;
        for(int i = 0; i < n-1; i++){
            farthest = Math.max(farthest,i+nums[i]);
            if(stepfar >= n-1) return res;//当前这一步最远的位置已经到终点,则返回结果
            if(i == stepfar){//已经遍历到这一步能走到的最远的位置,但还没到终点,就要再走一步
                stepfar = farthest;//更新下一步能到达的最远的位置,即到目前为止之前所有元素最大的farthest
                res++;//走下一步,步数+1
            }
        }
        return  res;
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值