Leetcode【双指针 前缀和 哈希】| 1. 两数之和 & 560. 和为K的子数组 & 974. 和可被 K 整除的子数组

这篇博客介绍了LeetCode中三道与双指针、前缀和和哈希表相关的题目:1. 两数之和、560. 和为K的子数组、974. 和可被K整除的子数组。通过暴力解法、双指针优化、哈希表等方法进行解题,详细阐述了解题思路和优化技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Leetcode | 1.两数之和

题目

给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/two-sum

解题

暴力解法

 最笨的方法:枚举出所有的情况,找出符合条件的两个数。

class Solution {
   
    public int[] twoSum(int[] nums, int target) {
           
        int n = nums.length;
        int[] res = new int[2];
        for(int i = 0; i < n; i++){
   
            for(int j = i+1; j < n; j++){
   
                if(nums[i]+nums[j] == target){
   
                    res[0] = i;
                    res[1] = j;
                    return res;
                }
            }
        }
        return res;
    }
}

在这里插入图片描述

双指针(优化时间)

 先排序,然后用双指针,左指针从左,用指针从最右开始依次寻找。优化了时间复杂度,只需遍历一层,无需双层遍历。因为要用额外的数组存储本来的数组方便存储本来的索引值,所以算是空间换时间。

class Solution {
   
    public int[] twoSum(int[] nums, int target) {
           
        int n = nums.length;
        int[] res = new int[2];
        List<Integer> list = Arrays.stream(nums).boxed().collect(Collectors.toList());
        Arrays.sort(nums);
        int p = 0, q = n-1;
        while(p<q){
   
            if(nums[p]+nums[q] == target){
   
                res[0] = list.indexOf(nums[p]);
                res[1] = list.lastIndexOf(nums[q]);
                return res;
            }else if(nums[p]+nums[q] > target){
   //当前总和大于target,右指针往左挪,使总和变小向target靠近
                q
&lt;think&gt;好的,我现在需要帮助用户理解如何用双指针算法解决为k的连续子数组问题。用户提到他们看过一些引用资料,其中提到了暴力解法前缀和方法,但可能对双指针的应用有疑问。首先,我得回忆一下双指针通常适用的场景,比如在有序数组中的两数之和或者滑动窗口问题。 首先,用户提供的引用[1]中提到了使用两个指针的暴力解法,时间复杂度是O(N^2)。但用户可能想知道是否有更高效的双指针方法。不过,根据我的知识,双指针在非负数组的情况下可以用于滑动窗口,例如求子数组的最小长度,或者为k的情况。但问题在于,如果数组包含负数,滑动窗口可能无法正确工作,因为移动左指针时,无法保证会减少,或者右指针移动时会单调增加。 所以需要确认题目中的数组是否包含负数。根据引用[2],题目中的数组是非负数的,所以可能双指针可以适用。但用户的问题是关于为k的子数组,而引用[1]中的解法虽然用了双指针,但实际上是暴力法,两层循环,真正的滑动窗口可能不同。 我需要解释为什么在一般情况下双指针不适用于存在负数的情况,但如果数组全是非负数,可能可以调整。例如,当数组元素都是正数时,滑动窗口可以通过移动左右指针来调整当前,从而找到符合条件的子数组。但如果是允许零的话,可能需要特别处理,因为零的加入不会改变,但题目允许非负数,所以可能可以处理。 但用户的问题是关于为k的连续子数组,而LeetCode 560题允许正负数,所以标准的解法是前缀和哈希表,时间复杂度O(N)。但用户想了解双指针的实现,可能因为在某些特定情况下双指针可行,比如数组全为正数或非负数的情况。 所以,我需要分情况讨论:当数组元素全为非负数时,可以使用滑动窗口的双指针方法,此时时间复杂度可以优化到O(N),因为右指针左指针都只移动一次。而当数组包含负数时,双指针无法保证正确性,必须使用前缀和的方法。 根据引用[1]中的代码,用户提供的例子是使用双指针的暴力解法,时间复杂度O(N^2),这说明可能用户看到的是这样的解法,但想知道是否有更好的双指针方法。但实际上,正确的双指针滑动窗口仅适用于非负数组,而暴力解法中的双指针其实只是两层循环的另一种写法,并不是真正的滑动窗口优化。 因此,我需要明确告诉用户双指针在什么情况下适用,以及其局限性,并引导他们理解正确的解决方案。可能还需要指出引用中的代码其实是暴力法,而真正的双指针优化需要特定条件。 总结回答的结构应该是: 1. 说明双指针的适用场景(非负数组) 2. 解释双指针在此情况下的实现步骤 3. 指出存在负数时的限制,并推荐前缀和方法 4. 提供示例代码(如适用) 5. 相关问题生成&lt;/think&gt;### 双指针算法解决为k的连续子数组问题 #### 1. 双指针的适用场景 双指针算法(滑动窗口)**仅适用于非负数组**。因为当数组元素全为非负数时,窗口扩大(右指针右移)会使子数组单调递增,窗口缩小(左指针右移)会使单调递减。这种特性保证了可以通过调整窗口范围高效地找到符合条件的子数组[^1][^2]。 #### 2. 双指针算法实现步骤 1. **初始化指针**:左指针`left=0`,右指针`right=0`,当前`current_sum=0`,计数器`count=0`。 2. **滑动窗口**: - 右指针逐步右移,将元素加入`current_sum`。 - 当`current_sum == k`时,记录结果并尝试右移左指针。 - 若`current_sum &gt; k`,则持续右移左指针,直到`current_sum &lt;= k`。 3. **遍历完成**:当右指针遍历完数组后,统计所有符合条件的子数组。 #### 3. 示例代码(非负数组) ```python def subarraySum(nums, k): left = 0 current_sum = 0 count = 0 for right in range(len(nums)): current_sum += nums[right] # 若当前超过k,尝试缩小窗口 while left &lt;= right and current_sum &gt; k: current_sum -= nums[left] left += 1 # 统计符合条件的子数组 if current_sum == k: count += 1 return count ``` #### 4. 存在负数时的限制 若数组包含负数,窗口扩大时`current_sum`可能减小,缩小时可能增大,导致无法通过调整窗口范围准确找到所有子数组。此时需使用**前缀和+哈希表**的方法(时间复杂度$O(N)$)[^3][^4]。 例如,对于数组`[1, -1, 1]`,目标$k=1$,滑动窗口会漏掉子数组`[1, -1, 1]`。 #### 5. 总结 - **非负数组**:双指针(滑动窗口)时间复杂度$O(N)$。 - **含负数数组**:必须用前缀和+哈希表,时间复杂度$O(N)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值