巨人肩膀上的迁移学习(2)---图像回归

本文介绍了利用迁移学习进行图像回归的方法,使用VGG16模型处理fashion MNIST数据集。通过预处理图像,包括尺寸调整和归一化,然后利用正态分布为每类衣物设定价格。实验结果显示,经过5个epoch的训练,模型的均方误差达到0.01,实现了有效的图像回归预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    Hello,又是一个分享的日子,上期博主介绍了巨人肩膀上的迁移学习----图像分类,并介绍了图像在进入神经网络前的预处理工作。今天博主给大家分享的是利用迁移学习对图像数据回归,不可避免的,这也同样需要对图像数据进行预处理,因此还没有熟悉图像预处理的可以花上几分钟看一看博主的上一期推文。

    当然啦,说到图像分类,就离不开CNN卷积神经网络,这一期我们采用的VGG16迁移学习模型就是由CNN网络加全连接层组成的。博主也在往期的推文中也介绍了CNN卷积神经网络的原理,还不熟悉CNN卷积神经网络原理的小伙伴可以翻一下:什么?卷积层会变胖?人工智能之光---CNN卷积神经网络(原理篇),这里博主就不进行过多的赘述了。

    

   

   

回归

 回归任务                                                                                      

640?wx_fmt=gif

      

这里先讲下我们这次迁移学习的回归任务:我们这期还是采用与前两期相同的图像数据集fashion minist,这个数据集是衣服图像数据集合,有10个标签,这里我们需要给这10类衣服假设他们对应的价格,然后对其进行回归预测。

那么如何假设他们的价格呢?这里我们通过正态分布去给每一类衣服标上他们的价格。

正态分布的两个最重要的指标是均值和标准差,它决定了整个正态分布的位置和形状。我们这里简单利用它的性质,提前设定好我们每一类衣服的价格(即均值), 然后设定一个标准差,通过正态分布去随机生成价格赋予给对应类的衣服。下面,我们上个图让大家有更加直观的感受。

640?wx_fmt=png

上图的μ就是均值也就是我们提前设定的衣服价格,σ就是我们设定的标准差,通过两者描绘出了正态分布的图像,然后我们通过它随机产生一个价格赋予该类衣服即可。

如上图可见,在99%的情况下,价格都在均值μ±2.58σ处振荡,因此我们得到的衣服价格不会太过偏离我们之前的设定的均值(价格),既保证了我们该类衣服价格设定的随机性,同时也保证了价格范围的合理性。

  • 伪造回归数据规则

总共有10类衣服,他们每一类的价格设置规则如下:

  • 回归原理

在往期的推文中,博主也利用过BP神经网络做回归任务,如果想更加深入了解的小伙伴也可以去翻阅一下

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值