对XGboost和CNN的理解

本文深入探讨了XGBoost算法的原理和应用,并介绍了卷积神经网络(CNN)的工作机制,包括输入层的预处理、卷积层的权值共享、激活函数的选择(如ReLU、LeakyReLU、Maxout)以及池化层和全连接层的作用。此外,还提到了在训练过程中如何利用dropout和数据增强提升模型的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

XGboost: https://blog.csdn.net/a1b2c3d4123456/article/details/52849091
CNN: https://blog.csdn.net/woaijssss/article/details/79535052
输入层: 去均值、归一化、PCA/SVD降维等
卷积层: 权值共享
激活层:
首先ReLU,因为迭代速度快,但是有可能效果不加。如果ReLU失效的情况下,考虑使用Leaky ReLU或者Maxout,此时一般情况都可以解决。Tanh函数在文本和音频处理有比较好的效果。
池化层: 欠采样或下采样,主要用于特征降维 最大池化、平均池化
全连接FC层: Softmax输出
可以引入dropout操作,来随机删除神经网络中的部分神经元,来解决此问题。还可以进行局部归一化(LRN)、数据增强等操作,来增加鲁棒性。当来到了全连接层之后,可以理解为一个简单的多分类神经网络(如:BP神经网络),通过softmax函数得到最终的输出。整个模型训练完毕

https://campoo.cc/cnn/

医疗运作管理:https://www.zhihu.com/question/318235131/answer/637429075

python扩展包:https://www.lfd.uci.edu/~gohlke/pythonlibs/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值