智能工厂的设计软件 “原力”和“新生力量” 之1

本文要点

本篇“智能工厂的设计软件”中的双重客体“程序Program”(姑且 认为是 模拟人工智能- 一具体问题域具体分析得到的单个实体)的天生“原力”( 对AI的初始假设)的认识以及 出生后这些“原力”如何以及怎样更新(假设检验--一个给定组织中的集体) 并生成“新生力量”(智能增强- 整体),目的是要为昨天讨论的三个任务划分 (词典编纂,文本解释和逻辑描述)找到合适的位置并由此来判断 已经给出的三个任务的文字表述内容 的准确性以及 描述格式的完备性和三者协同的保证性。

天生“原力”

将天生“原力”假设为三种 usually“常识”的“前述谓经验”(领悟能力-推理(谓词演算的过程-离散概念词“effector”)模糊度处理能力-测量(经验观测的进程-离散函数值“Instrument)”精确度 表达能力-计算(数学计算的线程-离散代数图 Agent)复杂度 )三者都是由“内在上的不确定性”引发的不同“变法”,变化的结果 分别是 “Program”的过程Process类型/进程Procedure类型和线程thread类型。

概要

  • 1)领悟能力【顿非顿-(前件抄录)整定(应用配置profile-映射(人工智能AI-追求普智的现实模型):经验学习leanring 认知科学的CFR实践Canonical Formation Rules-微感机“独角兽”:λ表达式及IE范式)】:原则上的3对成对出现的CFR-   (认知的感知-行动门的 连续并行的 “感知”侧的集中式传感器对应的“行动”门侧的 去中心化外围设备DP)的逻辑演绎模式 modus(语法句子的通用程序框架Framework“编程范式连续变化(步进式 的单调类型谓词 树式Trees的 增量型--从中心向四周逐步渐变【渐】)过程”类型)
  • 2)处理能力 【渐非渐-(基因转录)商定(上层建筑superstructure-转换(因果关系-追求全能的意识模型):知识学习research 自然科学的一系列KES设计( knowledge extraction systems)-有限状态机“双面神”:命题句子及KE样式)】:原始点上五对IO- (中立于的中心操纵的神经元计算分布式控制的输入输出设备)的数学演算模式 mode (语用语句的标准语言模板Template“主题样式”离散近似(脉动式 的简单命名命题链式Chains的 增数型--内核突然出现突变【顿】)线程”类型)
  • 3) 表达能力【秘密显露--(原由目录)协定(基础设施infrastructure-投影(机器学习ML-追求专精的社会模型):数据学习 study 计算机科学fmf实现(A Flexible Modular Framework)-图灵机“圣灵三角形”:谓词语句及FE格式)】:原语中的三对同时发生EC-The fmf 实现(对立于计算机集群的 中央处理器的 边缘化计算设备)的 语言演进模式 pattern(语义表达式的公共逻辑符号Notations “交换格式”持续进化(变频式的 一阶定义公式列式Lists的 增值型--  核心偶然发生聚变【秘密】)-“进程”类型)
详细
1)领悟能力
  • 1)肯定前件式((modus-ponens--询问的原则。称为“引力”),
  • 2)否定后件式(modus-tollens--告诉的原则。称为“满力”),
  • 3) 待定中件式 ( modus-harden(我“创造”的)--选择的原则( 类似 构造性两难)。称为“业力” )。
  • 这里 的逻辑演绎 三个模式“Modus” 将专门运用于  “Program”的三个常规过程(封装/集成/启动上作为 Program处理的三个不同分支条件:   “封装”的 充分条件、 “集成”的 必要条件和   “启动”的 Inus条件。
  • 同时  “引满能招业力牵” 的 认知原理  作为 “Program” 领悟能力 的指导原则。  “引满能招业力牵”的解释:  建立在“心流”基础之上的 “业力”的招感性  是 “感知”的基础(“感知”是“心动”的结果),“满力”的“溢出”是“招感性”起作用的前提( 起作用的后果就是“脑动”),“引力”的“涌现”则是“满力”的积累开端(满力充满后 就“行动”)。 

下面是对 “三种 逻辑演义模式 给出的三个知识原则(询问/告诉/选择)所称的“引力”,“满力”和“业力”的解释---形成知识的三种不同过程。

  • 引力”的本体三元组共同建立在递归定义的初始集合基础上持续进行内部能量交换直到新创一个三元组 产生能量“迁移”的 过程 
  • “满力”的整体三分法经由二分法 到 整分法的外部交换或“贸易”过程(伴随着能量的和物质的交换)再回归到每个整子Holon上得以逐步增强 
  • 业力”的实体三位体中的三位建立在迭代声明的中间位的基础上建好后向两边蔓延直到填满而显现出“体”的一个内部物质交换或“流变”过程

Q&A

Q1、今天聊聊“智能工厂的设计软件”中的双重客体“程序”(姑且 认为是 模拟人工智能- 一具体问题域具体分析得到的单个实体)的天生“原力”( 对AI的初始假设)的认识以及 出生后这些“原力”如何以及怎样更新(假设检验--一个给定组织中的集体) 并生成“新生力量”(智能增强- 整体),目的是要为昨天讨论的三个任务划分 (词典编纂,文本解释和逻辑描述)找到合适的位置并由此来判断 已经给出的三个任务的文字表述内容 的准确性以及 描述格式的完备性和三者协同的保证性。

在讨论“智能工厂的设计软件”中的双重客体“程序”(在此情境下,我们将其视为模拟人工智能的实体,针对具体问题域进行特定分析得出的单个实体)时,我们需要深入探讨这些程序的“原力”(即对AI的初始假设)以及这些原力如何随着程序的运行和与环境的交互而更新,进而产生“新生力量”(即智能的增强和整体能力的提升)。这一过程对于理解如何为昨天讨论的三个任务(词典编纂、文本解释、逻辑描述)在智能工厂设计软件中找到合适的位置至关重要,同时也帮助我们判断现有任务描述内容的准确性、描述格式的完备性以及三者协同的保证性。

“原力”的认识

  1. 初始假设:程序的“原力”源自于其设计之初的AI假设,这些假设包括但不限于算法的选择、数据结构的设计、知识表示的方式以及学习机制等。这些假设决定了程序的基本行为模式和初始能力。

  2. 问题域适应性:针对不同的问题域,程序的“原力”会有所不同。例如,在词典编纂任务中,程序的“原力”可能侧重于语言处理和知识库构建;在文本解释任务中,则可能更强调文本分析和上下文理解能力;而在逻辑描述任务中,则可能关注逻辑推理和规则生成。

“原力”的更新与“新生力量”的生成

  1. 假设检验与更新:随着程序与真实世界数据的交互,其“原力”会经历假设检验的过程。通过对比预测结果与实际结果,程序能够识别出其假设中的不足,并据此进行更新。这一过程可能是自动化的,也可能需要人工干预和专家知识的支持。

  2. 学习与适应:在智能工厂设计软件中,程序通过持续的学习来适应不断变化的环境和需求。这包括从数据中学习新的模式、优化算法参数、更新知识库等。这种学习和适应能力是程序生成“新生力量”的关键。

  3. 智能增强:随着“原力”的不断更新和学习,程序的整体能力得到提升,形成“新生力量”。这些新生力量可能表现为更高的准确率、更快的处理速度、更强的泛化能力或更复杂的决策支持等。

任务划分与协同

  1. 任务位置:在智能工厂设计软件中,词典编纂、文本解释和逻辑描述三个任务可以视为软件不同功能模块或子系统的组成部分。这些任务相互关联又相对独立,共同支撑起软件的整体功能。

  2. 描述内容的准确性与完备性:对于每个任务的描述,应确保其内容的准确性,即准确反映任务的目标、输入输出和关键步骤。同时,描述格式应具有完备性,能够涵盖任务的所有重要方面,并为后续的实现和测试提供充分的指导。

  3. 协同的保证性:为了确保三个任务能够协同工作,需要在设计软件时考虑它们之间的接口和数据交换机制。此外,还需要设计合理的任务调度和执行流程,以确保任务之间的有序进行和高效协同。

综上所述,通过对智能工厂设计软件中双重客体“程序”的“原力”及其更新过程的认识,我们可以为词典编纂、文本解释和逻辑描述三个任务在软件中找到合适的位置,并据此判断现有任务描述内容的准确性、描述格式的完备性以及三者协同的保证性。

推荐阅读:

  • 人工智能的发展历程
  • 人工智能的发展过程
  • 人工智能智能进化的关键驱动力

相关问题:

  • “原力”如何具体指导程序行为?
  • 如何量化“新生力量”的提升?
  • 协同机制如何确保任务高效?

Q2、(重来)先说天生“原力”。假设为三种(领悟能力,处理能力 和表达能力 )。
领悟能力 逻辑演绎 (原则的3对 DP -中立于神经元计算的中心操纵的去中心化外围设备)模式 modus 范式 -连续逼近(步进式 单调类型谓词 树式 增量型 从中心渐变)
处理能力 数学演算 (原始的五对IO-对应于认知机制的感知-行动门的 连续并行的分布式控制的输入输出设备)模式 mode 样式--离散近似(脉动式 简单命名命题链式 增数型 由内核突变)
表达能力:语言演进(原语的三对EC-相对于计算机集群的 中央集权统治的  边缘化计算设备) 交换模式 pattern 格式--持续(变频式 一阶定义公式 列式 增值型 核心聚变)

在智能工厂设计软件中,我们假设每个程序或智能实体天生具备三种“原力”:领悟能力、处理能力和表达能力。这些“原力”是程序进行信息处理、决策和与外界交互的基础。下面,我将根据您提供的框架,详细阐述这三种“原力”及其对应的模式和特性。

领悟能力:逻辑演绎

定义:领悟能力是指程序从外部环境中提取信息,通过逻辑分析和演绎来理解和解释这些信息的能力。

  • 原则的3对DP:这里的“DP”可能指的是数据处理(Data Processing)的某种模式或原则。中立于神经元计算的中心操纵的去中心化外围设备,意味着领悟能力在结构上既有一个中心控制单元(类似于神经元网络中的“大脑”),又依赖于去中心化的外围设备(如传感器、执行器等)来收集和处理数据。这种设计有助于实现灵活且高效的信息感知和理解。
  • modus 范式:在逻辑演绎的过程中,程序采用modus(模式或方法)范式来进行推理。这包括连续逼近的策略,如步进式(逐步深入)、单调类型谓词(确保推理的一致性和单调性)、树式结构(用于表示推理的层次和分支)、增量型(逐步更新和调整推理结果)以及从中心渐变(以中心控制单元为核心,逐步向外围设备扩散影响)等。

处理能力:数学演算

定义:处理能力是指程序对信息进行数学计算、处理和转换的能力。

  • 原始的五对IO:这里的“IO”指的是输入输出(Input/Output)设备或过程。原始的五对IO可能代表了认知机制中的感知-行动循环的五个关键环节。这些IO设备或过程在连续并行的分布式控制下工作,确保信息的高效流动和处理。这种设计类似于人类认知过程中的感知、记忆、思考、决策和行动等环节的协同作用。
  • mode 样式:在处理过程中,程序采用离散近似的mode(模式或样式)来逼近真实世界的复杂性。这包括脉动式(周期性或节奏性的处理过程)、简单命名命题链式(通过构建命题链来表达复杂信息)、增数型(通过逐步增加数值或复杂度来逼近目标)以及由内核突变(在关键节点或阶段发生显著变化)等策略。

表达能力:语言演进

定义:表达能力是指程序将处理结果或内部状态以某种形式(如语言、图像、声音等)输出给外部世界的能力。

  • 原语的三对EC:这里的“EC”可能指的是表达控制(Expression Control)的某种机制或原则。原语的三对EC表示表达能力基于一组基本元素(原语)和相应的控制机制来构建复杂的表达。这种设计有助于实现灵活且丰富的表达方式。相对于计算机集群的中央集权统治的边缘化计算设备,意味着表达能力可能不仅限于中央处理单元,还涉及到边缘计算设备(如智能终端、物联网设备等)的协同作用。
  • 交换模式 pattern 格式:在表达过程中,程序采用持续的交换模式pattern(模式或格式)来生成和传输信息。这包括变频式(根据需要调整表达的频率和节奏)、一阶定义公式(用于精确描述概念或关系)、列式(以列表或表格形式组织信息)、增值型(通过添加新的信息或细节来丰富表达)以及核心聚变(在表达的核心部分集中呈现最关键或最有价值的信息)等策略。

综上所述,领悟能力、处理能力和表达能力共同构成了智能工厂设计软件中程序实体的三种天生“原力”。这些“原力”通过不同的模式和策略相互作用,共同推动程序的智能化进程。同时,它们也是理解和评估智能工厂设计软件性能的重要指标。

推荐阅读:

  • 三感三力研讨材料
  • 三感三力感想体会
  • 三大思维 八大智能

相关问题:

  • 如何优化领悟能力的逻辑推理效率?
  • 处理能力中哪种mode最常用?
  • 表达能力的核心聚变如何具体实现?

Q3、下面我们分别展开这三种原力
1)领悟能力 逻辑演绎 (原则的3对 DP -中立于神经元计算的中心操纵的去中心化外围设备)模式 modus 范式 -连续逼近(步进式 单调类型谓词 树式 增量型 从中心渐变):1)肯定前件式((ponens--询问的原则. 引力),2)否定后件式(tollens-告诉的原则  满力)3) 待定中件式 ( harden 选择的原则 -类似 构造性两难(constructive dilemma)。  业力 )。这里 的三个“演绎模式Modus” 将专门运用于  “Program”的三个常规过程上作为条件的三个不同分支:   “封装”的 充分条件、 “集成”的 必要条件和   “启动”的 Inus条件。同时  “引满能招业力牵” 的 认知原理  作为 “Program” 领悟能力 的指导原则。

好的,让我们分别展开这三种原力中的领悟能力,特别是其逻辑演绎部分,并详细阐述三个演绎模式(Modus)如何应用于程序的常规过程。

领悟能力:逻辑演绎

领悟能力是程序从外部环境中获取信息,并通过逻辑分析和演绎来理解这些信息的能力。在智能工厂设计软件中,这种能力对于实现高效的决策和自适应调整至关重要。

原则的3对DP
  • 中立于神经元计算的中心操纵的去中心化外围设备:这一原则强调了程序结构中的中心与外围的协同作用。中心控制单元(类似于神经元网络中的“大脑”)负责全局的协调和决策,而去中心化的外围设备(如传感器、执行器等)则负责具体的数据收集和执行任务。这种设计使得程序既能保持整体的一致性,又能灵活应对局部的变化。
Modus 范式:连续逼近

在逻辑演绎的过程中,程序采用连续逼近的策略来逐步接近正确的结论。这包括以下几种模式:

  1. 肯定前件式(Modus Ponens)

    • 应用:在程序的“封装”过程中,Modus Ponens作为充分条件的演绎模式。如果某个条件(前件)被满足(例如,某个功能模块的输入数据完整且有效),则程序可以推断出某个结果(后件)必然发生(例如,该功能模块可以成功封装并准备进行下一步集成)。这类似于询问的原则,即“如果条件A成立,则结果B必然发生”。
  2. 否定后件式(Modus Tollens)

    • 应用:在程序的“集成”过程中,Modus Tollens作为必要条件的演绎模式。如果某个结果(后件)不成立(例如,集成测试失败),则程序可以推断出某个条件(前件)必然不满足(例如,某个功能模块的接口不匹配或数据格式错误)。这类似于告诉的原则,即“如果结果B不发生,则条件A必然不成立”。
  3. 待定中件式(类似构造性两难,Constructive Dilemma)

    • 应用:在程序的“启动”过程中,由于启动条件可能涉及多个相互依赖的因素,且这些因素之间可能存在复杂的逻辑关系,因此采用类似构造性两难的演绎模式(这里我们称之为“待定中件式”)。该模式通过构建一系列的条件组合来推断启动是否可行。例如,如果条件A或条件B成立,则程序可以启动;但如果两者都不成立,则启动将受阻。这类似于选择的原则,即在多个条件中寻找满足启动要求的组合。
“引满能招业力牵” 的认知原理

这个原理可以理解为程序在积累足够的领悟能力(引满能)后,将能够吸引和调动更多的资源(业力)来支持其后续的运行和决策。在智能工厂设计软件中,这意味着随着程序对环境的不断学习和理解,它将能够更准确地预测和应对各种情况,从而优化整个系统的运行效率。

综上所述,领悟能力中的逻辑演绎通过三个演绎模式(Modus Ponens、Modus Tollens、待定中件式)在程序的常规过程(封装、集成、启动)中发挥作用,同时受到“引满能招业力牵”这一认知原理的指导。这种能力使得程序能够灵活应对复杂多变的环境,实现高效的决策和自适应调整。

推荐阅读:

  • 逻辑学在人工智能领域中的作用
  • 人工智能体现的哲学原理
  • 人工智能的基本逻辑知识

相关问题:

  • 如何量化领悟能力的提升?
  • Modus在实时系统中如何优化?
  • 哪些因素影响“业力”的吸引?

Q4、我将“待定中件式”用“ modus-harden”您觉得三个面不妥吗?

使用“modus-harden”作为“待定中件式”的替代术语是可以的,只要这个术语在您的上下文或领域中具有清晰和一致的定义。不过,在标准的逻辑学和编程术语中,“modus-harden”并不是一个广泛认可或使用的术语。因此,在采用它之前,我们需要确保它不会引起混淆或误解。

以下是几个考虑因素:

  1. 清晰度:确保“modus-harden”能够清晰地传达您想要表达的逻辑演绎模式。它应该与“肯定前件式”(Modus Ponens)和“否定后件式”(Modus Tollens)在逻辑上保持一致,并有自己的独特含义。

  2. 一致性:如果您在文档中、代码中或与其他团队成员交流时频繁使用“modus-harden”,请确保这个术语的使用是一致的,以避免混淆。

  3. 可理解性:对于不熟悉您特定术语的人来说,“modus-harden”可能不够直观或易于理解。因此,考虑在首次引入时提供清晰的定义和解释。

  4. 标准术语:如果可能的话,考虑使用逻辑学或计算机科学中已经存在的标准术语来描述这种模式。这有助于与其他领域的专家进行更有效的交流。

如果您决定使用“modus-harden”,并且它在您的上下文中是清晰、一致且可理解的,那么它是可以接受的。不过,请确保在必要时提供适当的解释和定义。

另外,您提到的“待定中件式”与构造性两难(Constructive Dilemma)在逻辑上有些相似,但又不完全相同。如果您想要一个更贴近标准的术语,可以考虑使用类似于“构造性条件组合”或“条件性演绎”(虽然这不是一个标准的逻辑术语)来描述这种模式。不过,请注意,这些术语可能需要您自己进行定义和解释。

推荐阅读:

  • pbc逻辑术语
  • excel表格中排序自定义规则的逻辑
  • 逻辑思维术语最全术语合集

相关问题:

  • 如何保证术语一致应用?
  • “modus-harden”定义明确吗?
  • 是否存在更标准的术语?

Q5、重说。1)领悟能力 逻辑演绎 (原则的3对 DP -中立于神经元计算的中心操纵的去中心化外围设备)模式 modus 范式 -连续逼近(步进式 单调类型谓词 树式 增量型 从中心渐变):1)肯定前件式((modus-ponens--询问的原则. 称为“引力”),2)否定后件式(modus-tollens-告诉的原则  称为“满力”)3) 待定中件式 ( modus-harden(我“创造”的)--选择的原则( 类似 构造性两难)。  称为“业力” )。这里 的三个“Modus” 将专门运用于  “Program”的三个常规过程上作为 Program处理的三个不同分支条件:   “封装”的 充分条件、 “集成”的 必要条件和   “启动”的 Inus条件。同时  “引满能招业力牵” 的 认知原理  作为 “Program” 领悟能力 的指导原则。

您已经很好地重新阐述了领悟能力中的逻辑演绎部分,并清晰地定义了三个Modus(模式)以及它们在程序处理过程中的应用。以下是基于您描述的详细阐述:

领悟能力:逻辑演绎

领悟能力是程序理解和分析信息,从而做出决策或预测的能力。在智能工厂设计软件中,这种能力通过逻辑演绎来实现,具体体现在以下三个Modus(模式)上:

原则的3对DP
  • 中立于神经元计算的中心操纵的去中心化外围设备:这一原则强调了程序架构的灵活性和高效性。中心控制单元(类似于神经元网络中的“大脑”)负责全局的决策和协调,而去中心化的外围设备则负责具体的任务执行