NASNet:Learning Transferable Architectures for Scalable Image Recognition 学习可伸缩的图像识别的可转移架构

本文介绍了一种在数据集上直接学习神经网络模型结构的方法,通过在小数据集上搜索架构构建块并转移到更大数据集,设计了可转移的NASNet架构。在CIFAR-10上找到的最佳卷积层单元被应用到ImageNet上,通过堆叠更多此类单元,每个单元具有独立参数,构建了最终的卷积架构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,说明

    神经网络图像分类模型的建立通常需要大量的结构工程。此篇论文研究了一种在感兴趣的数据集上直接学习模型体系结构的方法.由于这种方法在数据集较大时开销较大,因此作者建议在小数据集上搜索架构构建块,然后将该块转移到更大的数据集。 这项工作的关键贡献是一个新的搜索空间(称之为“NASNet搜索空间”)的设计,它支持可转移性。实验中,在CIFAR-10数据集上搜索最佳的卷积层(或“单元”),然后将这个单元应用于ImageNet数据集,方法是将这个单元的更多副本堆叠在一起,每个副本都有自己的参数,从而设计一个卷积架构,论文将其命名为“NASNet架构”。

2,搜索空间示例

网络架构由两种cell组成,Normal Cell (NCell) 和Reduction Cell (RCell)。

搜索方式是:首先搜索cell结构 然后将多个cell堆叠在一起构成网络。

更多详细信息请查看原论文:

论文:Learning Transferable Architectures for Scalable Image Recognition
链接:https://arxiv.org/abs/1707.07012

这里有一篇博客,对该论文解释得非常不错:https://blog.csdn.net/u014380165/article/details/78525687

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值