转载:https://yinguobing.com/separable-convolution/#fn2
移动端设备的硬件性能限制了神经网络的规模。本文尝试解释一种被称为Separable Convolution的卷积运算方式。它将传统卷积分解为Depthwise Convolution与Pointwise Convolution两部分,有效的减小了参数数量。一些轻量级的网络,如mobilenet中,会有深度可分离卷积(depthwise separable convolution),由depthwise(DW)和pointwise(PW)两个部分结合起来,用来提取特征feature map。其参数数量和运算成本比较低。
常规卷积操作
对于一张5x5像素、三通道(shape为5x5x3),经过3x3卷积核的卷积层(假设输出通道数为4,则卷积核shape为3x3x3x4,最终输出4个feature map,如果有same padding,则尺寸与输入层相同(5x5),如果没有则尺寸变为3x3)
卷积层共4个filter,每个filter包含了3个kernel,每个kernel的大小为3x3.因此,卷积层的参数数量可以用如下公式来计算:
N_std = 4x3x3x3 = 108
Separable convolution
Separable Convolution在Google的Xception以及MobileNet论文中均有描述。它的核心思想是将一个完整的卷积运算分解为两步进行,分别为Depthwise Convolution与Pointwise Convolution。
Depthwise convolution
Depthwise convolution的一个卷积核负责一个通道,一个通道只被一个卷积核卷积。
同样是上述例子,一张5x5像素、三通道的彩色输入图片(shape为5x5x3),depthwise convolution首先经过第一次卷积运算,DW完全是在二位平面内进行。卷积核的数量与上一层的通道数相同(通道和卷积核一一对应)。所以一个三通道的图像经过运算后生成了3个feature map(如果有same padding则尺寸与输入层相同,为5x5),如下图所示:
其中一个filter只包含一个大小为3x3的kernel,卷积部分的参数个数计算如下:
N_depthwise = 3x3x3 = 27
Depthwise convolution完成后的feature map数量与输入层的通道数相同,无法扩展feature map,而且这种运算对输入层的每个通道独立进行卷积运算,没有有效的利用不同通道在相同空间位置上的feature信息。因此,需要pointwise convolution来将这些feature map进行组合生成新的feature map。
Pointwise convolution
Pointwise convolution的运算与常规卷积运算非常相似,它的卷积核的尺寸为1x1xM,M为上一层的通道数。所以这里的卷积运算会将上一步的map在深度方向上进行加权组合,生成新的feature map。有几个卷积核就有几个输出feature map。
由于采用的是1x1卷积的方式,此步中卷积涉及到的参数个数可以计算为:
N_pointwise = 1x1x3x4 = 12
经过pointwise convolution之后,同样输出了4张feature map,与常规卷积的输出维度相同。
参数对比
回顾一下,常规卷积的参数个数为:
N_std = 3x3x3x4 = 108
Separable convolution的参数由两部分相加得到:
N_depthwise = 3x3x3 = 27
N_pointwise = 1x1x3x4 = 12
N_separable = N_depthwise + N_pointwise = 39
相同的输入,同样是得到4张feature map,separable convolution的参数个数是常规卷积的约1/3。因此,在参数量相同的前提下,采用separable convolution的神经网络层数可以做的更深。
TIPs:也就是说,depthwise convolution层,只改变feature map的大小,不改变通道数;而pointwise convolution层,只改变通道数,不改变大小。这样将常规卷积的做法(改变大小和通道数)拆分成两步走。