0.摘要
这篇论文提出了一种利用最先进的 ResNet 和 DenseNet 中 Skip connection 结构的对抗样本生成方法,称为 ‘SGM’,这种生成方法能与之前的对抗样本生成技术结合,提高生成的对抗样本的黑盒攻击转移率。
1.背景
1.1 关于Skip connection结构
ResNet即残差网络,与普通神经网络模型的最大区别是引入了skip connection结构。最基本的公式如上所示,表示将某一层的输入数据跳跃若干层作用到更深的另一层输入之中,形成了如下所示的‘残差块‘
那这样做有什么好处呢?研究实验表明这样可以有效解决深度网络训练优化过程中的梯度消失等问题,因为相当于在梯度中加入了不变的常数项,在反向传播过程中就可以把梯度影响传递得更深。除此之外,skip connection还可以增强网络泛