【论文笔记】Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNet

0.摘要

     这篇论文提出了一种利用最先进的 ResNet 和 DenseNet 中 Skip connection 结构的对抗样本生成方法,称为 ‘SGM’,这种生成方法能与之前的对抗样本生成技术结合,提高生成的对抗样本的黑盒攻击转移率。

 

 

1.背景

1.1 关于Skip connection结构

 

      ResNet即残差网络,与普通神经网络模型的最大区别是引入了skip connection结构。最基本的公式如上所示,表示将某一层的输入数据跳跃若干层作用到更深的另一层输入之中,形成了如下所示的‘残差块‘

     那这样做有什么好处呢?研究实验表明这样可以有效解决深度网络训练优化过程中的梯度消失等问题,因为相当于在梯度中加入了不变的常数项,在反向传播过程中就可以把梯度影响传递得更深。除此之外,skip connection还可以增强网络泛

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值