探究flink-stream如何增量的读取iceberg table

本文详细探讨了Flink-Stream如何通过StreamingReaderOperator增量地读取Iceberg表。从官方文档出发,分析了startSnapshotId的作用,并深入源码,解释了StreamingMonitorFunction的工作机制,如何生成FlinkInputSplit以及如何从FlinkInputSplit中获取增量数据。通过跟踪DataIterator.next(),揭示了底层文件读取的过程,包括对PARQUET、AVRO、ORC等文件格式的支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从iceberg的官方文档上可以看到如下介绍:
在这里插入图片描述
实例程序中设置了startSnapshotId,介绍说可以从指定的快照版本号开始读取增量的数据。那么笔者的问题来了:

flink-stream如何增量的读取iceberg table?

flink本身肯定没有增量读取iceberg的能力,这是提供框架层的方法,在源码iceberg/flink/src/main/java/org/apache/iceberg/flink/source/中找到了StreamingReaderOperator.java类,继承了flink的AbstractStreamOperator,我们常识从这里入手去读源码。

/**
 * The operator that reads the {@link FlinkInputSplit splits} received from the preceding {@link
 * StreamingMonitorFunction}. Contrary to the {@link StreamingMonitorFunction} which has a parallelism of 1,
 * this operator can have multiple parallelism.
 *
 * <p>As soon as a split descriptor is received, it is put in a queue, and use {@link MailboxExecutor}
 * read the actual data of the split. This architecture allows the separation of the reading thread from the one split
 * processing the checkpoint barriers, thus removing any potential back-pressure.
 */
 public class StreamingReaderOperator extends AbstractStreamOperato
### Apache Iceberg 实现流处理和批处理一体化架构设计 #### 1. 架构概述 Apache Iceberg 提供了一种统一的数据表格式,能够很好地支持流处理和批处理的一体化操作。这种特性使得开发者可以在同一个数据源上执行不同的查询模式,而无需担心底层数据结构的变化[^1]。 #### 2. 数据写入机制 对于批量加载场景,可以利用 Spark 或者其他 ETL 工具直接向 Iceberg 表中插入大量静态数据;而在流式环境中,则可以通过 Flink 等框架持续不断地将新产生的事件追加到目标表格里。无论哪种情况,Iceberg 都能自动管理文件版本控制并保持高效读取性能[^3]。 ```python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("BatchWriteExample").getOrCreate() df_batch = spark.read.json("/path/to/batch/data") # 将 DataFrame 写入 Iceberg 表作为批次作业的一部分 (df_batch.write.format("iceberg") .mode("append") .save("my_catalog.db.my_table")) ``` #### 3. 增量读取功能 借助于内置的时间旅行特性和快照隔离级别,应用程序不仅限于访问最新状态下的记录集合,还可以轻松获取任意历史时刻之前发生过的变更日志。特别是当与 Structured Streaming 结合使用时,这一优势尤为明显——允许用户定义自定义水印策略来优化延迟敏感型应用的表现。 ```sql CREATE TABLE my_streaming_source ( id BIGINT, data STRING, event_time TIMESTAMP(3), WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND ) WITH ( 'connector' = 'kafka', ... ); SELECT * FROM my_iceberg_table WHERE __changed_at >= (SELECT MAX(__commit_timestamp) FROM my_streaming_checkpoint); ``` #### 4. 统一视图呈现 为了简化开发流程中的复杂度,建议创建虚拟视图表来封装不同类型的查询逻辑。这样做的好处是可以让下游消费者不必关心具体的技术细节,只需按照标准 SQL 方言提交请求即可获得所需的结果集[^4]。 ```sql CREATE VIEW unified_view AS WITH batch_data AS ( SELECT *, '__batch' as source_type FROM my_iceberg_table ), stream_updates AS ( SELECT *, '__stream' as source_type FROM my_streaming_source ) SELECT * FROM batch_data UNION ALL SELECT * FROM stream_updates; ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值