Deepseek-R1 的成功已经证明了纯 RL 路线的强大潜力,但现有 RL 框架对于工具配置和奖励设计要求较高的工程能力。RLFactory 的出现,正是为了解决这一痛点,让使用者专注于核心算法创新,而无需为繁琐的工程细节分心。
RLFactory 是一个完全开源的、面向Agent模型端到端训练的简单且高效的 RL 后训练框架,其将环境与 RL 后训练解耦,实现了只需工具配置和奖励函数即可训练,并支持异步工具调用,让 RL 后训练提速约 2 倍以上。
RLFactory 有何独特之处?
- 极致易用:只需配置 MCP 工具与奖励函数,无需复杂代码,快速启动训练。
- 高效训练:异步工具调用、奖励并行计算,训练效率提升2倍+。
- 一键式体验:原生支持一键式 DeepSearch 训练,多轮工具调用、LLM as Judge等高级特性即开即用。
- 社区驱动:持续优化,WebUI 正在开发,未来实现真正零代码一键训练。
为什么要训练端到端Agent模型?
Agent模型的核心能力是通过调用各种形式的工具,完成给定的任务。广义上,RLFactory 支持的“工具”指“不是当前训练模型生成的内容”——它们可以是程序、其他模型,甚至是其他 Agent。
- 程序形式:各类搜索接口(输入 query,输出结果)、代码解释器(输入代码,输出执行结果)、计算器(输入公式,输出计算结果)
- 模型形式:其他开源/闭源模型(如用 GPT-4o 做文档总结,输入 Prompt,输出 Response)
- Agent 形式:程序和模型的集合(如文献综述 Agent,输入主题,输出综述结果)
端到端Agent模型有哪些不一样?
传统工作流依赖人工规则和分阶段处理,效率低下。RLFactory 支持端到端训练,模型可自主推理决策,决定何时、如何调用工具与终止任务,极大提升 LLM 应用的智能化和自动化水平。
- 输入:原始任务(如用户的自然语言指令、问题、对话等)
- 输出:最终的任务结果(如多轮工具调用后的答案、执行结果等)
- 无需人工为每一步单独设计规则
下图展示了端到端Agent模型的交互流程:
- 输入原始
Prompt
,Agent模型推理输出Response
(自行决定使用工具或者输出结果) - 对模型输出做后处理,解析工具名称及参数(若未解析到工具,视为终止循环,输出模型响应)
- 按解析到的工具名称及参数运行工具(可并行),并对工具结果做后处理
- 将工具结果拼接回
Prompt
,再次调用模型,直至终止
RLFactory - 简单且高效的端到端RL后训练
RLFactory的目标是让用户专注于奖励逻辑和工具配置,以极少的代码实现快速的 Agentic Learning,而进阶开发者则可以专注于提升训练效率和模型性能。
RLFactory的核心优势:
- 奖励函数易设计:通过规则、模型判分(LLM as Judge) 、工具(例如SQL查表) 计算奖励,满足你对奖励函数的所有需求。
- 工具接入无门槛:只需提供 MCP 工具和自定义工具的配置文件,即可无缝集成到 RL 学习中。
- 多智能体扩展性:将你的 agent 转换为 MCP 格式,轻松实现多智能体交互。未来还会加入 LLM 聊天模拟,提升多轮对话能力。
- 训练效率提升:批处理和异步并行工具调用,分布式部署 LRM(如 QwQ-32B)进行高效模型判分,让训练提速 2 倍甚至更高。
面向未来发展,RLFactory希望维护一个活跃的开源社区,积极听取所有使用者的意见,持续坚持“易用”和“高效”两大核心。
- 更易用:通过 WebUI 进行数据处理、工具和环境定义、训练配置调整及项目管理。(WebUI 正在快速开发中)
- 更高效:持续迭代和优化训练框架(如 AsyncLLMEngine)及 RL 训练算法。
训练示例:5小时训练端到端的DeepSearch模型
只需配置Qwen3模型和MCP工具,便可快速复现并训练自己的DeepSearch Agent。不需要SFT,Qwen3直接通过RL后训练即可精准调用工具!
训练100步(8*A100,仅5小时),Qwen3-4B得分0.458,Qwen3-8B得分0.463,效率比传统方案提升1.5~2倍!如果涉及模型判分,则效率提升更明显。
模型地址见文末的 Qwen3-8B-GRPO 和 RLFactory-Qwen3-4B-GRPO
模型名称 | 测试得分(NQ) | 总训练时间(100 步) | 每步耗时(秒) | 训练资源 |
---|---|---|---|---|
Search-R1-Qwen2.5-3B-Instruct-GRPO | 0.356 | 7.39 小时 | 266 秒 | A100 × 8 |
Search-R1-Qwen2.5-7B-Instruct-GRPO | 0.451 | 9.25 小时 | 333 秒 | A100 × 8 |
Search-R1-Qwen3-4B-GRPO | 0.420 | 7.95 小时 | 286 秒 | A100 × 8 |
RLFactory-Qwen3-4B-GRPO | 0.458 | 5.30 小时 | 190 秒 | A100 × 8 |
RLFactory-Qwen3-8B-GRPO | 0.463 | 5.76 小时 | 207 秒 | A100 × 8 |
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
5. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】
参考资料
代码仓库: https://github.com/Simple-Efficient/RL-Factory
教程地址: https://github.com/Simple-Efficient/RL-Factory/blob/main/docs/rl_factory/main_tutorial.md
RLFactory-Qwen3-8B-GRPO: https://huggingface.co/Simple-Efficient/RLFactory-Qwen3-8B-GRPO
RLFactory-Qwen3-4B-GRPO : https://huggingface.co/Simple-Efficient/RLFactory-Qwen3-4B-GRPO