使用R语言绘制多时间生存资料的AUC曲线

90 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言的timeROC包绘制多时间生存资料的AUC曲线,以此评估模型在不同时间点的预测准确性。通过安装timeROC包,准备包含生存时间、事件状态和风险评分的数据,然后调用plotAUCcurve函数,可以生成展示AUC值随时间变化的图形。此外,还讨论了如何通过函数参数调整曲线的外观以满足分析需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用R语言绘制多时间生存资料的AUC曲线

在生存分析中,评估模型的预测能力是非常重要的。其中,面积下的ROC曲线(AUC)是一种常用的评估指标,用于衡量模型在不同时间点的预测准确性。在R语言中,我们可以使用timeROC包的plotAUCcurve函数来可视化多时间生存资料的AUC曲线。

首先,我们需要安装并加载timeROC包。可以使用以下代码来完成这一步骤:

install.packages("timeROC")
library(timeROC)

接下来,我们需要准备生存数据。假设我们有一个数据框(data.frame),其中包含了个体的生存时间(time)和事件状态(status),以及模型对个体的风险评分(score)。我们可以使用如下的示例数据来进行演示:

# 创建示例数据
set.seed(123)
time <- rweibull(100, shape = 1.5, scale = 1)
status <- rbinom(100, size = 1, prob = 0.7)
score <- rnorm(100)

# 创建生存数据框
data <- data.frame(time
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值