使用C++实现卡尔曼滤波
卡尔曼滤波是一种用于对状态变化建模和估计的数学工具,特别适用于具有噪声或不确定性的系统。在本文中,我们将使用C++实现一个简单的卡尔曼滤波器,并通过示例演示其使用。
先介绍一下卡尔曼滤波的基本思想。它通过对系统状态的预测和测量值的比较,来对系统状态进行估计和修正。具体地说,卡尔曼滤波分为预测步骤和更新步骤:
-
预测步骤:根据前一时刻的系统状态和控制输入,预测当前时刻的系统状态,并计算其协方差矩阵。
-
更新步骤:根据当前时刻的测量值和预测值之间的差异,计算最优估计,并更新状态和协方差矩阵。
下面我们来看一个简单的例子,假设我们有一个小车,可以通过测量GPS位置和速度来估计其位置和速度。我们假设小车的位置和速度都是一维的,即x和v。
首先,我们定义状态向量和状态转移矩阵:
Eigen::VectorXd x(2