Python实现的前世今生(时光穿梭)- 人脸年龄变化预测
时光飞逝,我们所熟悉的面孔也随之发生着岁月的痕迹。在影视作品中,经常运用到角色的年龄穿越,如《阿甘正传》中主角从年轻到老年的变化,这种变化叫做“时空穿梭”,有时候也称为前世今生。
而在计算机视觉领域中,许多应用场景也需要对人脸图像进行年龄变化预测,比如科学研究、娱乐游戏等等。这里我们将介绍一个基于 OpenCV 和 Dlib 的 Python 实现,可以对人脸进行年龄变化预测。
首先,我们需要安装 OpenCV 和 Dlib 模块,可以通过 pip install opencv-python dlib 来完成。
接下来,我们需要载入模型文件,包括人脸检测器模型和年龄回归模型。这里我们选择使用 Dlib 提供的人脸检测器和年龄回归模型:
import cv2
import dlib
# 建立 Dlib 的人脸检测器和年龄回归模型
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
age_regressor = dlib.face_recognition_model_v1("dlib_face_recognition_resnet_model_v1.dat")
接下来,我们可以编写一个函数,用于对输入的人脸图像进行年龄变化预测。在函数内部,我们需要先通过人脸检测器找到输入图像中的所有人脸,然后提取人脸区域的特征点,并使用年龄回归模型预测年龄。最后,我们将预测结果绘制在图像上,并返回结果: