MinimumCostPath最小成本路径算法的实现(JavaScript)

505 篇文章 ¥59.90 ¥99.00
本文介绍了使用JavaScript解决最小成本路径问题的动态规划算法。通过创建二维数组表示网格图,计算从起点到每个节点的最小成本,最终找到终点的最小成本,示例中给出的3x3网格图最小成本为7。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MinimumCostPath最小成本路径算法的实现(JavaScript)

最小成本路径问题是指在一个网格图中,从起点到终点的路径上,使得路径上的权值和最小化。这个问题可以通过动态规划方法解决。下面我将给出一个使用JavaScript实现的MinimumCostPath算法。

首先,我们需要定义一个二维数组来表示网格图,其中每个元素代表一个节点的权值。假设网格图的大小为m行n列,则二维数组的大小为m*n。接下来,我们定义一个新的二维数组dp来记录从起点到每个节点的最小成本。

算法的思路是从起点开始,逐步计算到达每个节点的最小成本,最终得到终点的最小成本。

下面是JavaScript代码的实现:

function minimumCostPath(grid) {
   
  const m &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值